People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Fangohr, Hans
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2020fmmgen
- 2018Proposal for a micromagnetic standard problem for materials with Dzyaloshinskii–Moriya interactioncitations
- 2016Resonant translational, breathing and twisting modes of pinned transverse magnetic domain wallscitations
- 2012Ultrahard magnetic nanostructurescitations
- 2010Fabrication and simulation of nanostructures for domain wall magnetoresistance studies on nickelcitations
- 2008Numerical investigation of domain walls in constrained geometriescitations
- 2007Geometrical multilayers: coercivity in magnetic 3-D nanostructurescitations
- 2007Analysis of magnetoresistance in arrays of connected nano-ringscitations
- 2007A systematic approach to multiphysics extensions of finite-element-based micromagnetic simulations: Nmagcitations
- 2006Magnetic anisotropy in the cubic Laves REFe2 intermetallic compoundscitations
- 2005Shape-induced anisotropy in antidot arrays from self-assembled templatescitations
Places of action
Organizations | Location | People |
---|
article
Fabrication and simulation of nanostructures for domain wall magnetoresistance studies on nickel
Abstract
We report the use of electron beam lithography and a bilayer lifto® process to fabricate magnetic Ni nanostructures with constriction widths in the range of 22 to 41 nm. The structures fabricated correspond to the nanobridge geometry. Reproducibility and control over the final nanostructure geometry were observed when using the fabrication process introduced, these two qualities are important in order to carry out a more systematic analysis of domain wall magnetoresistance (DWMR). On the other hand, micromagnetic simulations of structures with the nanobridge geometry were carried out using not only the dimensions of the fabricated nanostructures but also smaller dimensions thought to be achievable with further optimization of the fabrication process. It was found that domain walls with a reduced length of 42.5 nm can be obtained using the nanobridge geometry. Furthermore, the anisotropic magnetoresistance (AMR) effect was calculated numerically and it was found to be smaller than the DWMR, this makes the nanobridge geometry a good candidate for future measurements of the magnetoresistive effect due to domain wall scattering.