People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Latuch, Jerzy
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2019Effect of silver content in Zr<inf>55</inf>Cu<inf>30</inf>Ni<inf>5</inf>Al<inf>10−x</inf>Ag<inf>X</inf> alloys on the supercooled liquid stability analysed by TTT diagrams
- 2017Influence of cobalt content on the structure and hard magnetic properties of nanocomposite (Fe,Co)-Pt-B alloyscitations
- 2017Isothermal Stability and Selected Mechanical Properties of Zr48Cu36Al8Ag8 Bulk Metallic Glasscitations
- 2011Soft magnetic amorphous Fe–Zr–Si(Cu) boron-free alloyscitations
- 2011Correlation between the size of Nd<inf>60</inf>Fe<inf>30</inf>Al <inf>10</inf> sample, cast by various techniques and its coercivity
- 2010Structural and magnetic properties of the ball milled Fe <inf>56</inf> Pt <inf>24</inf> B <inf>20</inf> alloycitations
- 2010Novel amorphous Fe-Zr-Si(Cu) boron-free alloyscitations
- 2010Structural transformations and magnetic properties of Fe <inf>60</inf> Pt <inf>15</inf> B <inf>25</inf> and Fe <inf>60</inf> Pt <inf>25</inf> B <inf>15</inf> nanocomposite alloyscitations
- 2009Magnetic properties of the Fe48.75 Pt 26.25 B 25 nanostructured alloycitations
- 2008Effect of processing parameters on the structure and magnetic properties of Nd60Fe30Al10 alloycitations
- 2007Crystallization behaviour of the Fe <inf>60</inf> Co <inf>10</inf> Ni <inf>10</inf> Zr <inf>7</inf> B <inf>13</inf> metallic glasscitations
- 2005Crystallization kinetics of Al-Mm-Ni-(Co,Fe) alloyscitations
- 2005Amorphous bulk alloys from Al-Mm-Ni system produced by hot compaction
- 2004Crystallisation behaviour of rapidly quenched cast irons with small amount of boroncitations
- 2004Magnetic and transport properties of nanocrystallizing supercooled amorphous alloy Fe74Al4Ga2P11B4Si4Cu1citations
Places of action
Organizations | Location | People |
---|
article
Effect of processing parameters on the structure and magnetic properties of Nd60Fe30Al10 alloy
Abstract
Although rapidly solidified Nd–Fe–Al alloys exhibit hard magnetic properties they so far have not found any practical application, however, their study has great scientific meaning. Investigations of the Nd–Fe–Al alloys enable one to evaluate the effect of magnetic interactions, between nanoscale precipitates, having different structure and properties, on the macroscopically observed phenomena. The evolution of microstructure in the course of annealing is generally unclear. Most of the reported data were obtained for different materials, using various processing methods, which makes their comparison difficult. It was shown that different fabrication methods (melt spinning, suction casting) generate different properties. On the other hand, for the particular processing method the structure and magnetic properties are highly affected by the processing variables. In this study the samples fabricated by two methods were compared. Melt spinning, with the roll speed 5–30 m/s, and casting into moulds having bore diameters 1, 3, 6 and 12 mm were used. The alloy composition was kept constant Nd60Fe30Al10. Strong dependence of the magnetic properties on quenching rate was proved. Application of the appropriate processing variables for both the methods (roll speed or rode diameter) enables one to obtain comparable quenching rates and thus overall similar magnetic properties. However, for the cylindrical specimens different cooling rates for the surface and core produces a structural gradient, which leads to variation of the magnetic properties on the sample cross-section. The structural and property gradients were evaluated using SEM and magnetic measurements, respectively.