People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Michalski, Bartosz
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2022In situ alloying of NiTi: Influence of laser powder bed fusion (LBPF) scanning strategy on chemical compositioncitations
- 2022Heat Treatment of NiTi Alloys Fabricated Using Laser Powder Bed Fusion (LPBF) from Elementally Blended Powderscitations
- 2021Effect of severe deformation on the microstructure and properties of Nd-Fe-B powders caused by hydrostatic extrusioncitations
- 2019Monitoring of the hydrogen decrepitation process by acoustic emissioncitations
- 2019Effect of silver content in Zr<inf>55</inf>Cu<inf>30</inf>Ni<inf>5</inf>Al<inf>10−x</inf>Ag<inf>X</inf> alloys on the supercooled liquid stability analysed by TTT diagrams
- 2017Complex Characteristics of Sintered Nd–Fe–B Magnets in Terms of Hydrogen Based Recyclingcitations
- 2016Hydrogen disproportionation phase diagram and magnetic properties for Nd<inf>15</inf>Fe<inf>79</inf>B<inf>6</inf> alloycitations
- 2013Effect of microstructure changes on magnetic properties of spark plasma sintered Nd-Fe-B powderscitations
- 2012Processing the Nd-Fe-B powders by high temperature millingcitations
- 2012Magnetic properties of Nd 12Fe 82B 6 and Nd 14Fe 80B 6 powders obtained by high temperature milling
- 2011Characterization of nanostructured Nd-Fe-Al permanent magnetscitations
- 2011Correlation between the size of Nd<inf>60</inf>Fe<inf>30</inf>Al <inf>10</inf> sample, cast by various techniques and its coercivity
- 2008Effect of processing parameters on the structure and magnetic properties of Nd60Fe30Al10 alloycitations
Places of action
Organizations | Location | People |
---|
article
Effect of processing parameters on the structure and magnetic properties of Nd60Fe30Al10 alloy
Abstract
Although rapidly solidified Nd–Fe–Al alloys exhibit hard magnetic properties they so far have not found any practical application, however, their study has great scientific meaning. Investigations of the Nd–Fe–Al alloys enable one to evaluate the effect of magnetic interactions, between nanoscale precipitates, having different structure and properties, on the macroscopically observed phenomena. The evolution of microstructure in the course of annealing is generally unclear. Most of the reported data were obtained for different materials, using various processing methods, which makes their comparison difficult. It was shown that different fabrication methods (melt spinning, suction casting) generate different properties. On the other hand, for the particular processing method the structure and magnetic properties are highly affected by the processing variables. In this study the samples fabricated by two methods were compared. Melt spinning, with the roll speed 5–30 m/s, and casting into moulds having bore diameters 1, 3, 6 and 12 mm were used. The alloy composition was kept constant Nd60Fe30Al10. Strong dependence of the magnetic properties on quenching rate was proved. Application of the appropriate processing variables for both the methods (roll speed or rode diameter) enables one to obtain comparable quenching rates and thus overall similar magnetic properties. However, for the cylindrical specimens different cooling rates for the surface and core produces a structural gradient, which leads to variation of the magnetic properties on the sample cross-section. The structural and property gradients were evaluated using SEM and magnetic measurements, respectively.