Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Felton, Solveig

  • Google
  • 14
  • 57
  • 321

Queen's University Belfast

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (14/14 displayed)

  • 2022Thermal and magnetic field switching in a two-step hysteretic MnIII spin crossover compound coupled to symmetry breakings34citations
  • 2022Thermal and Magnetic Field Switching in a Two‐Step Hysteretic Mn<sup>III</sup> Spin Crossover Compound Coupled to Symmetry Breakings34citations
  • 2022Thermal and Magnetic Field Switching in a Two‐Step Hysteretic Mn(III) Spin Crossover Compound Coupled to Symmetry Breakings34citations
  • 2022Thermal and magnetic field switching in a two-step hysteretic Mn III spin crossover compound coupled to symmetry breakings34citations
  • 2021Percolation in metal-insulator composites of randomly packed spherocylindrical nanoparticles3citations
  • 2019Controlling Ferromagnetic Ground States and Solitons in Thin Films and Nanowires Built from Iron Phthalocyanine Chains6citations
  • 2016Evaluation of La1−xSrxMnO3 (0 ≤ x < 0.4) synthesised via a modified sol–gel method as mediators for magnetic fluid hyperthermia61citations
  • 2006Simulations of magnetic microstructure in thin film elements used for programmable motion of magnetic particles5citations
  • 2006Chemical tuning of the interlayer magnetic coupling in TlCo2Se2-xSx14citations
  • 2005Cycloidal magnetic order in the compound IrMnSi23citations
  • 2005Magnetic short-range order in the new ternary phase Mn8Pd15Si75citations
  • 2004Magnetic and electronic structure of TICo2S214citations
  • 2004Crystal and magnetic structure of Mn3IrSi28citations
  • 2001Fragility of the spin-glass-like collective state to a magnetic field in an interacting Fe-C nanoparticle system26citations

Places of action

Chart of shared publication
Ding, Xiaxin
3 / 4 shared
Lee, Minseong
3 / 5 shared
Jakobsen, Vibe B.
2 / 2 shared
Morgan, Grace G.
2 / 4 shared
Trzop, Elzbieta
4 / 5 shared
Esien, Kane
4 / 5 shared
Dobbelaar, Emiel
4 / 4 shared
Carpenter, Michael A.
2 / 23 shared
Müller-Bunz, Helge
1 / 3 shared
Collet, Eric
4 / 16 shared
Chikara, Shalinee
3 / 4 shared
Zapf, Vivien S.
2 / 2 shared
Jakobsen, Vibe Boel
1 / 1 shared
Morgan, Grace
1 / 1 shared
Carpenter, Michael
1 / 1 shared
Müllerbunz, Helge
2 / 2 shared
Jakobsen, Vibe, B.
1 / 1 shared
Morgan, Grace, G.
1 / 1 shared
Zapf, Vivien, S.
1 / 1 shared
Müller-Bunz, Helge, G. G.
1 / 1 shared
Carpenter, Michael, A.
1 / 2 shared
Huang, Zhi Feng
1 / 1 shared
Waters, Brendon
1 / 2 shared
Pokhrel, Shiva
1 / 1 shared
Nadgorny, Boris
1 / 1 shared
Heutz, Sandrine
1 / 2 shared
Wu, Zhenlin
1 / 1 shared
Robaschik, Peter
1 / 1 shared
Fleet, Luke
1 / 1 shared
Aeppli, Gabriel
1 / 6 shared
Stella, Lorenzo
1 / 7 shared
Cook, J.
1 / 1 shared
Mcbride, K.
1 / 1 shared
Poulidi, D.
1 / 2 shared
Gray, S.
1 / 3 shared
Gunnarsson, K.
1 / 1 shared
Warnicke, P.
1 / 2 shared
Svedlindh, P.
2 / 7 shared
Nordblad, P.
6 / 17 shared
Berger, R.
2 / 11 shared
Ronneteg, S.
2 / 3 shared
Andersson, Y.
3 / 6 shared
Eriksson, O.
2 / 13 shared
Burkert, T.
1 / 1 shared
Eriksson, T.
3 / 5 shared
Bergqvist, L.
2 / 5 shared
Tellgren, R.
1 / 3 shared
Mellergard, A.
1 / 1 shared
Howing, J.
1 / 1 shared
Gustafsson, T.
1 / 1 shared
Larsson, A. K.
1 / 1 shared
Gelius, U.
1 / 1 shared
Lumey, M. W.
1 / 2 shared
Dronskowski, R.
1 / 6 shared
Lizarraga, R.
1 / 2 shared
Jonsson, P. E.
1 / 1 shared
Hansen, M. F.
1 / 5 shared
Chart of publication period
2022
2021
2019
2016
2006
2005
2004
2001

Co-Authors (by relevance)

  • Ding, Xiaxin
  • Lee, Minseong
  • Jakobsen, Vibe B.
  • Morgan, Grace G.
  • Trzop, Elzbieta
  • Esien, Kane
  • Dobbelaar, Emiel
  • Carpenter, Michael A.
  • Müller-Bunz, Helge
  • Collet, Eric
  • Chikara, Shalinee
  • Zapf, Vivien S.
  • Jakobsen, Vibe Boel
  • Morgan, Grace
  • Carpenter, Michael
  • Müllerbunz, Helge
  • Jakobsen, Vibe, B.
  • Morgan, Grace, G.
  • Zapf, Vivien, S.
  • Müller-Bunz, Helge, G. G.
  • Carpenter, Michael, A.
  • Huang, Zhi Feng
  • Waters, Brendon
  • Pokhrel, Shiva
  • Nadgorny, Boris
  • Heutz, Sandrine
  • Wu, Zhenlin
  • Robaschik, Peter
  • Fleet, Luke
  • Aeppli, Gabriel
  • Stella, Lorenzo
  • Cook, J.
  • Mcbride, K.
  • Poulidi, D.
  • Gray, S.
  • Gunnarsson, K.
  • Warnicke, P.
  • Svedlindh, P.
  • Nordblad, P.
  • Berger, R.
  • Ronneteg, S.
  • Andersson, Y.
  • Eriksson, O.
  • Burkert, T.
  • Eriksson, T.
  • Bergqvist, L.
  • Tellgren, R.
  • Mellergard, A.
  • Howing, J.
  • Gustafsson, T.
  • Larsson, A. K.
  • Gelius, U.
  • Lumey, M. W.
  • Dronskowski, R.
  • Lizarraga, R.
  • Jonsson, P. E.
  • Hansen, M. F.
OrganizationsLocationPeople

article

Simulations of magnetic microstructure in thin film elements used for programmable motion of magnetic particles

  • Gunnarsson, K.
  • Warnicke, P.
  • Felton, Solveig
  • Svedlindh, P.
Abstract

The results of two-dimensional micromagnetic modeling of magnetization patterns in Permalloy ellipses under the influence of rotating constant-amplitude magnetic fields are discussed. Ellipses of two different lateral sizes have been studied, 0.5m x 1.5m and 1m x 3m. The amplitude of the rotating magnetic field was varied between simulations with the condition that it must be large enough to saturate or nearly saturate the ellipse with the field applied along the long axis of the ellipse. For the smaller ellipse size it is found that the magnetization pattern forms an S state and the direction of the net magnetization lags behind the direction of the applied field. At a critical angle of the rotating magnetic field the direction of the magnetization switches by a large angle to a new S state. Both the critical angle and the angle interval of the switch depend on field amplitude. For this new state, it is instead the applied field direction that lags behind the magnetization direction. The transient magnetization patterns correspond to multi-domain patterns including two vortices, but this state never exists for the equilibrated magnetization patterns. The behavior of the larger ellipse in rotating field is different. With the field applied along the long-axis of the ellipse, the magnetization of the ellipse is nearly saturated with a vortex close to each apex of the ellipse. As the field is rotated, this magnetization pattern remains and the net-magnetization direction lags behind the direction of the field until for a certain angle of the applied field an equilibrium multi-domain state is created. Comparisons are made with corresponding experimental results obtained by performing in-field magnetic force microscopy on Permalloy ellipses.

Topics
  • impedance spectroscopy
  • microstructure
  • thin film
  • simulation
  • liquid-assisted grinding
  • two-dimensional
  • magnetization
  • microscopy