Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Veiga, Nélio

  • Google
  • 2
  • 9
  • 4

Universidade Católica Portuguesa

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Light transmittance through resin-matrix composite onlays adhered to resin-matrix cements or flowable composites2citations
  • 2024Light transmittance through resin-matrix composite onlays adhered to resin-matrix cements or flowable composites2citations

Places of action

Chart of shared publication
Souza, Júlio C. M.
1 / 22 shared
Catarino, Susana Oliveira
1 / 10 shared
Torres, Orlanda
2 / 13 shared
Braem, Annabel
2 / 35 shared
Carvalho, Óscar Samuel Novais
1 / 34 shared
Fidalgo-Pereira, Rita
2 / 12 shared
Carvalho, Óscar
1 / 10 shared
Catarino, Susana O.
1 / 3 shared
Matias De Souza, Júlio César
1 / 75 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Souza, Júlio C. M.
  • Catarino, Susana Oliveira
  • Torres, Orlanda
  • Braem, Annabel
  • Carvalho, Óscar Samuel Novais
  • Fidalgo-Pereira, Rita
  • Carvalho, Óscar
  • Catarino, Susana O.
  • Matias De Souza, Júlio César
OrganizationsLocationPeople

article

Light transmittance through resin-matrix composite onlays adhered to resin-matrix cements or flowable composites

  • Carvalho, Óscar
  • Torres, Orlanda
  • Catarino, Susana O.
  • Braem, Annabel
  • Matias De Souza, Júlio César
  • Veiga, Nélio
  • Fidalgo-Pereira, Rita
Abstract

<p>OBJECTIVE: The aim of this study was to evaluate the influence of the thickness of resin-matrix composite blocks manufactured by CAD-CAM on the light transmittance towards different resin-matrix cements or flowable composites. METHODS: Sixty specimens of resin-matrix composite CAD-CAM blocks reinforced with 89 wt% inorganic fillers were cross-sectioned with 2 or 3 mm thicknesses. The specimens were conditioned with adhesive system and divided in groups according to the luting material, namely: two dual-cured resin-matrix cements, two traditional flowable resin-matrix composites, and one thermal-induced flowable resin-matrix composite. Specimens were light-cured at 900 mW/cm 2 for 40s. Light transmittance assays were preformed using a spectrophotometer with an integrated monochromator before and after light-curing. Microstructural analysis was performed by optical and scanning electron microscopy (SEM). Nanoindentation tests were performed to evaluate mechanical properties for indirect evaluation of degree of monomers conversion. RESULTS: Optical and SEM images revealed low thickness values for the cementation interfaces for the traditional flowable resin-matrix composite. The cement thickness increased with the size and content of inorganic fillers. The highest light transmittance was recorded for the onlay blocks cemented with the traditional flowable resin-matrix composites while a group cemented with the dual-cured resin-matrix cement revealed the lowest light transmittance. The elastic modulus and hardness increased for specimens with high content of inorganic fillers as well as it increased in function of the light transmittance. CONCLUSIONS: The light transmittance of flowable resin-matrix composites was higher than that for resin-matrix cement after cementation to resin-matrix composites blocks. The type, size, and content of inorganic fillers of the luting material affected the thickness of the cement layer and light transmittance through the materials. CLINICAL RELEVANCE: On chair-side light curing, the transmission of visible light can be interfered by the chemical composition and viscosity of the luting materials. The increase in size and content of inorganic fillers of resin-matrix composites and luting materials can decrease the light transmittance leading to inefficient polymerization.</p>

Topics
  • scanning electron microscopy
  • composite
  • cement
  • viscosity
  • hardness
  • nanoindentation
  • chemical composition
  • resin
  • curing
  • collision-induced dissociation