People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Li, Wei
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (31/31 displayed)
- 2024Elucidating the Non-Covalent Interactions that Trigger Interdigitation in Lead-Halide Layered Hybrid Perovskites.citations
- 2024Elucidating the non-covalent interactions that trigger interdigitation in lead-halide layered hybrid perovskitescitations
- 2024Polycrystalline silicon, a molecular dynamics study : I. Deposition and growth modescitations
- 2024Polycrystalline silicon, a molecular dynamics study: Part I --- Deposition and growth modescitations
- 2024AM-SegNet for additive manufacturing in situ X-ray image segmentation and feature quantification
- 2024Efficient ab initio stacking fault energy mapping for dilute interstitial alloyscitations
- 2024Polycrystalline silicon, a molecular dynamics study: Part II --- Grains, grain boundaries and their structurecitations
- 2023Reconciling experimental and theoretical stacking fault energies in face-centered cubic materials with the experimental twinning stresscitations
- 2023Hard and tough novel high-pressure $γ-Si_3N_4/Hf_3N_4$ ceramic nanocompositescitations
- 2023Forecasting the Friction Coefficient of Rubbing Zirconia Ceramics by Titanium Alloycitations
- 2023Inferring mechanical properties of the SARS-CoV-2 virus particle with nano-indentation tests and numerical simulationscitations
- 2023Ab initio study of the effect of interstitial alloying on the intrinsic stacking fault energy of paramagnetic gamma-Fe and austenitic stainless steelcitations
- 2023Ab initio study of the effect of interstitial alloying on the intrinsic stacking fault energy of paramagnetic γ-Fe and austenitic stainless steelcitations
- 2022Single-source-precursor derived bulk Si3N4HfBxN(1-x) ceramic nanocomposites with excellent oxidation resistancecitations
- 2021An organic-inorganic hybrid scaffold with honeycomb-like structures enabled by one-step self-assembly-driven electrospinningcitations
- 2021An organic-inorganic hybrid scaffold with honeycomb-like structures enabled by one-step self-assembly-driven electrospinningcitations
- 2021Intracellular delivery of budesonide and polydopamine co-loaded in endosomolytic poly(butyl methacrylate-co-methacrylic acid) grafted acetalated dextran for macrophage phenotype switch from M1 to M2citations
- 2020In Situ N-Doped Graphene and Mo Nanoribbon Formation from Mo2Ti2C3 MXene Monolayers
- 2020Pompon Dahlia-like Cu2O/rGO Nanostructures for Visible Light Photocatalytic H2 Production and 4-Chlorophenol Degradationcitations
- 2020Intracellular co-delivery of melanin-like nanoparticle and budesonide by endosomolytic polymeric materials for anti-inflammatory therapy
- 2019Red-Shifted Absorptions of Cation-Defective and Surface-Functionalized Anatase with Enhanced Photoelectrochemical Propertiescitations
- 2017Picrasidine G decreases viability of MDA-MB 468 EGFR-overexpressing triple-negative breast cancer cells through inhibition of EGFR/STAT3 signaling pathway.citations
- 2017Decomposition of CoF3 during Battery Electrode Processing
- 2017Rubidium Multication Perovskite with Optimized Bandgap for Perovskite-Silicon Tandem with over 26% Efficiencycitations
- 2017Thermal expansion in FeCrCoNiGa high-entropy alloy from theory and experimentcitations
- 2016Enhancing the Optoelectronic Performance of Perovskite Solar Cells via a Textured CH3NH3PbI3 Morphologycitations
- 2016Enhancing the optoelectronic performance of perovskite solar cells via a textured CH3NH3PbI3 morphologycitations
- 2015Microfluidic chip designs process optimization and dimensional quality controlcitations
- 2015Elastic properties and acoustic dissipation associated with a disorder–order ferroelectric transition in a metal–organic frameworkcitations
- 2013Initial stage of free pressureless spark-plasma sintering of vanadium carbide: Determination of surface diffusion parameterscitations
- 2001Doping and carrier transport in Ga1−3xIn3xNxAs1−x alloyscitations
Places of action
Organizations | Location | People |
---|
article
Inferring mechanical properties of the SARS-CoV-2 virus particle with nano-indentation tests and numerical simulations
Abstract
<p>The pandemic caused by the SARS-CoV-2 virus has claimed more than 6.5 million lives worldwide. This global challenge has led to accelerated development of highly effective vaccines tied to their ability to elicit a sustained immune response. While numerous studies have focused primarily on the spike (S) protein, less is known about the interior of the virus. Here we propose a methodology that combines several experimental and simulation techniques to elucidate the internal structure and mechanical properties of the SARS-CoV-2 virus. The mechanical response of the virus was analyzed by nanoindentation tests using a novel flat indenter and evaluated in comparison to a conventional sharp tip indentation. The elastic properties of the viral membrane were estimated by analytical solutions, molecular dynamics (MD) simulations on a membrane patch and by a 3D Finite Element (FE)-beam model of the virion's spike protein and membrane molecular structure. The FE-based inverse engineering approach provided a reasonable reproduction of the mechanical response of the virus from the sharp tip indentation and was successfully verified against the flat tip indentation results. The elastic modulus of the viral membrane was estimated in the range of 7–20 MPa. MD simulations showed that the presence of proteins significantly reduces the fracture strength of the membrane patch. However, FE simulations revealed an overall high fracture strength of the virus, with a mechanical behavior similar to the highly ductile behavior of engineering metallic materials. The failure mechanics of the membrane during sharp tip indentation includes progressive damage combined with localized collapse of the membrane due to severe bending. Furthermore, the results support the hypothesis of a close association of the long membrane proteins (M) with membrane-bound hexagonally packed ribonucleoproteins (RNPs). Beyond improved understanding of coronavirus structure, the present findings offer a knowledge base for the development of novel prevention and treatment methods that are independent of the immune system.</p>