People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rosa, Lucas Saldanha Da
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024Effect of Glazing Protocol on the Surface Roughness and Optical Properties of Lithia-Based Glass-Ceramics
- 2024Repair of monolithic zirconia restorations with different direct resin compositescitations
- 2024Repair protocols for indirect monolithic restorationscitations
- 2024Cyclic fatigue of a repaired 4 YSZ ceramiccitations
- 2024How do different intraoral scanners and milling machines affect the fit and fatigue behavior of lithium disilicate and resin composite endocrowns?citations
- 2024Effect of abutment screw-access hole on the fatigue performance of implant-supported lithium-disilicate luted simplified restorations
- 2023Ceramic surface conditioning, resin cement viscosity, and aging relationships affect the load-bearing capacity under fatigue of bonded glass-ceramicscitations
- 2023The loss of resin cement adhesion to ceramic influences the fatigue behavior of bonded lithium disilicate restorationscitations
- 2023Karaya/Gellan-Gum-Based Bilayer Films Containing 3,3′-Diindolylmethane-Loaded Nanocapsules: A Promising Alternative to Melanoma Topical Treatmentcitations
- 2023Weak adhesion between ceramic and resin cement impairs the load-bearing capacity under fatigue of lithium disilicate glass-ceramic crownscitations
- 2023Influence of height discrepancy between pulp chamber floor and crestal bone in the mechanical fatigue performance of endodontically-treated teeth restored with resin composite endocrownscitations
- 2022Does adhesive luting promote improved fatigue performance of lithium disilicate simplified crowns?citations
- 2022Pigmentation techniques of a 4YSZcitations
Places of action
Organizations | Location | People |
---|
article
Influence of height discrepancy between pulp chamber floor and crestal bone in the mechanical fatigue performance of endodontically-treated teeth restored with resin composite endocrowns
Abstract
<p>Objective: To explore and characterize the effect of the discrepancy between crestal bone height (CB) and pulp chamber floor (PCF) in the fatigue performance of endodontically-treated teeth rehabilitated with an endocrown restoration. Materials and methods: A total of 75 human molars free of defects, caries history or cracks were selected, then endodontically treated and randomly allocated into 5 groups (N = 15) according to the difference between PCF and CB, as follows: PCF 2 mm above, PCF 1 mm above, PCF leveled, PCF 1 mm below and PCF 2 mm below. Endocrown restorations were made with composite resin (Tetric N-Ceram, shade B3, Ivoclar) in 1.5 mm thickness and luted with a resin cement (Multilink N, Ivoclar) onto the dental elements. Monotonic testing was performed to define the fatigue parameters, and a cyclic fatigue test was used until failure of the assembly. The collected data were submitted to statistical survival analysis (Kaplan-Meier followed by Mantel-Cox and Weibull), fractographic analysis and finite element analysis (FEA) were performed as complementary analyzes. Results: The PCF 2 mm below and PCF 1 mm below groups presented the best results regarding fatigue failure load (FFL) and number of cycles for failure (CFF) (p < 0.05), but presented no difference between each other (p > 0.05). The PCF leveled and PCF 1 mm above groups presented no statistical difference between them (p > 0.05), but performed better than the PCF 2 mm above group (p < 0.05). The rate of favorable failures of PCF 2 mm above, PCF 1 mm above, PCF leveled, PCF 1 mm below and PCF 2 mm below groups were 91.7%, 100%, 75%, 66.7% and 41.7%, respectively. FEA showed different stress magnitudes according to the pulp-chamber design. Conclusion: The insertion level of the dental element to be rehabilitated with an endocrown interferes in the mechanical fatigue performance of the set. The discrepancy between the CB height and the PCF has a direct effect, where the higher the PCF in relation to the CB, the greater the risk of mechanical failure of the restored dental element.</p>