People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Riches, Philip
University of Strathclyde
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2023Characterisation of native and decellularised porcine tendon under tension and compressioncitations
- 2023A chaos-inspired biomechanical biomarker of ankle instability
- 2016Paradoxical size effects in composite laminates and other heterogeneous materialscitations
- 2015The effects of decellularisation on the mechanical properties of bone, and subsequent recellularisation of the samples.
- 2014Characterisation and Validation of Sawbones™ Artificial Composite Femur material
- 2013On the Poisson's ratio of the nucleus pulposuscitations
- 2012Assessment of forces imparted on seating systems by children with special needs during daily living activitiescitations
Places of action
Organizations | Location | People |
---|
article
Characterisation of native and decellularised porcine tendon under tension and compression
Abstract
Decellularised porcine superflexor tendon (pSFT) has been characterised as a suitable scaffold for anterior cruciate ligament replacement, with dimensions similar to hamstring tendon autograft. However, decellularisation of tissues may reduce or damage extracellular matrix components, leading to undesirable biomechanical changes at a whole tissue scale.Although the role of collagen in tendons is well established, the mechanical contribution of glycosaminoglycans (GAGs) is less evident and could be altered by the decellularisation process. In this study, the contribution of GAGs to the tensile and compressive mechanical properties of pSFT was determined and whether decellularisation affected these properties by reducing GAG content or functionality.<br/><br/>PSFTs were either enzymatically treated using chondroitinase ABC to remove GAGs or decellularised using previously established methods. Native, GAG-depleted and decellularised pSFT groups were then subjected to quantitative assays and biomechanical characterisation. In tension, specimens underwent stress relaxation and strength testing. In compression, specimens underwent confined compression testing. <br/><br/>The GAG-depleted group was found to have a significantly lower GAG content than native and decellularised groups. There was no significant difference in GAG content between native and decellularised groups.Although stress relaxation testing discovered a reduction in the time-independent relaxation modulus in the decellularised group, there were no other significant differences between any of the groups for any of the remaining parameters assessed with stress relaxation or strength testing in tension. In compression testing, the aggregate modulus was found to be significantly lower in the GAG-depleted group than the native and decellularised groups, while the permeability was significantly higher in the GAG-depleted group than the decellularised group.<br/><br/>The results indicate that GAGs significantly contribute to the mechanical properties of pSFT in compression, but not in tension. Furthermore, the content and function of GAGs in pSFTs are unaffected by decellularisation and the mechanical properties of the tissue are retained.<br/>