People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Giannini, Marcelo
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2022Effects of argon plasma and aging on the mechanical properties and phase transformation of 3Y-TZP zirconiacitations
- 2022Effect of extended light activation and increment thickness on physical properties of conventional and bulk-filled resin-based compositescitations
- 2022Effect of build orientation in accuracy, flexural modulus, flexural strength, and microhardness of 3D-Printed resins for provisional restorationscitations
- 2022Effects of shades of a multilayered zirconia on light transmission, monomer conversion, and bond strength of resin cementcitations
- 2021Flexural strength and microhardness of bulk-fill restorative materialscitations
- 2017Influence of adhesive cementation systems on the bond strength of relined fiber posts to root dentincitations
- 2015The effect of photopolymerization on the degree of conversion, polymerization kinetic, biaxial flexure strength, and modulus of self-adhesive resin cementscitations
- 2015Monomer conversion, microhardness, internal marginal adaptation, and shrinkage stress of bulk-fill resin compositescitations
- 2013Silorane-and high filled-based "lowshrinkage" resin compositescitations
- 2007Bond strength and monomer conversion of bonding agents mixed with restorative composites prior to light exposurecitations
Places of action
Organizations | Location | People |
---|
article
Effect of build orientation in accuracy, flexural modulus, flexural strength, and microhardness of 3D-Printed resins for provisional restorations
Abstract
<p>Purpose: This study evaluated the effects of 3D-printing build orientation on accuracy, flexural modulus (FM), flexural strength (FS), and microhardness of selected, commercial 3D-printed provisional resins (3DRs). Material and methods: PMMA CAD/CAM provisional material (Vita Temp/Vita) served as Control. Four 3DRs (Cosmos-SLA/Yller, Cosmos-DLP/Yller, PriZma-Bioprov/Makertech, Nanolab/Wilcos) were used in three printing orientations (0°, 45°, and 90°). Printed samples were cleaned with isopropyl alcohol prior to post-curing in specific post-curing units. For each group, 20 bar-shaped samples (25 × 2x2 mm) and ten disc-shaped samples (15-mm diameter, 2.5-mm thick) were obtained. The dimensions of bar samples were measured and the mean percent errors were compared to the reference (digital) values to obtain “accuracy” (n = 20). Samples were then aged in distilled water at 37 °C and half were submitted to a three-point bend test in a universal testing machine after 24 h and the other half after 1 year (n = 10). Disc samples were polished prior to microhardness evaluation (n = 10). Microstructure and elemental composition of filler particles in the 3DRs were analyzed using scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS) (n = 3). Accuracy and microhardness were submitted to two way-, and FM and FS to three way-ANOVA, followed by Tukey's tests. Results of experimental groups were compared to a milled PMMA Control using Dunnett's tests, and Student's t-tests compared FM and FS to Control at different aging periods (α = 0.05). Results: Except for Cosmos-DLP, the 90° orientation demonstrated the best overall accuracy in all dimensions evaluated. The overall accuracy of Cosmos-SLA was not significantly different from Control and higher than other 3DRs. The FM of all 3DRs was lower than Control, regardless of orientation and aging period. After 1 year of aging, FS of 45°-Cosmos-SLA and all orientations of PriZma were not different from Control, while 90°-Cosmos-SLA was higher. Build orientation had no influence on microhardness of the 3DRs: Nanolab was the only resin harder than Control. Very few nanometric spherical filler particles were found in Cosmos-SLA, Cosmos-DLP, and PriZma, while Nanolab presented higher number of particles having irregular shapes and sizes. Conclusions: In general, although build orientation did not influence microhardness results, the 90° -orientation resulted in the best overall accuracy for most 3DRs. After 1-year water storage, Cosmos-SLA printed vertically showed the highest FS, while the PMMA Control obtained the highest FM for both aging periods.</p>