Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nima, Gabriel

  • Google
  • 1
  • 2
  • 45

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Effect of build orientation in accuracy, flexural modulus, flexural strength, and microhardness of 3D-Printed resins for provisional restorations45citations

Places of action

Chart of shared publication
Giannini, Marcelo
1 / 10 shared
Castro, Eduardo F. De
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Giannini, Marcelo
  • Castro, Eduardo F. De
OrganizationsLocationPeople

article

Effect of build orientation in accuracy, flexural modulus, flexural strength, and microhardness of 3D-Printed resins for provisional restorations

  • Giannini, Marcelo
  • Nima, Gabriel
  • Castro, Eduardo F. De
Abstract

<p>Purpose: This study evaluated the effects of 3D-printing build orientation on accuracy, flexural modulus (FM), flexural strength (FS), and microhardness of selected, commercial 3D-printed provisional resins (3DRs). Material and methods: PMMA CAD/CAM provisional material (Vita Temp/Vita) served as Control. Four 3DRs (Cosmos-SLA/Yller, Cosmos-DLP/Yller, PriZma-Bioprov/Makertech, Nanolab/Wilcos) were used in three printing orientations (0°, 45°, and 90°). Printed samples were cleaned with isopropyl alcohol prior to post-curing in specific post-curing units. For each group, 20 bar-shaped samples (25 × 2x2 mm) and ten disc-shaped samples (15-mm diameter, 2.5-mm thick) were obtained. The dimensions of bar samples were measured and the mean percent errors were compared to the reference (digital) values to obtain “accuracy” (n = 20). Samples were then aged in distilled water at 37 °C and half were submitted to a three-point bend test in a universal testing machine after 24 h and the other half after 1 year (n = 10). Disc samples were polished prior to microhardness evaluation (n = 10). Microstructure and elemental composition of filler particles in the 3DRs were analyzed using scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS) (n = 3). Accuracy and microhardness were submitted to two way-, and FM and FS to three way-ANOVA, followed by Tukey's tests. Results of experimental groups were compared to a milled PMMA Control using Dunnett's tests, and Student's t-tests compared FM and FS to Control at different aging periods (α = 0.05). Results: Except for Cosmos-DLP, the 90° orientation demonstrated the best overall accuracy in all dimensions evaluated. The overall accuracy of Cosmos-SLA was not significantly different from Control and higher than other 3DRs. The FM of all 3DRs was lower than Control, regardless of orientation and aging period. After 1 year of aging, FS of 45°-Cosmos-SLA and all orientations of PriZma were not different from Control, while 90°-Cosmos-SLA was higher. Build orientation had no influence on microhardness of the 3DRs: Nanolab was the only resin harder than Control. Very few nanometric spherical filler particles were found in Cosmos-SLA, Cosmos-DLP, and PriZma, while Nanolab presented higher number of particles having irregular shapes and sizes. Conclusions: In general, although build orientation did not influence microhardness results, the 90° -orientation resulted in the best overall accuracy for most 3DRs. After 1-year water storage, Cosmos-SLA printed vertically showed the highest FS, while the PMMA Control obtained the highest FM for both aging periods.</p>

Topics
  • microstructure
  • scanning electron microscopy
  • strength
  • flexural strength
  • aging
  • Energy-dispersive X-ray spectroscopy
  • resin
  • alcohol
  • aging
  • curing
  • collision-induced dissociation