Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Manthe, J.

  • Google
  • 1
  • 6
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Hip implant modular junction: The role of CoCrMo alloy microstructure on fretting-corrosion.13citations

Places of action

Chart of shared publication
Bijukumar, Divya Rani
1 / 4 shared
Barba, M.
1 / 3 shared
Pourzal, R.
1 / 2 shared
Neto, M.
1 / 1 shared
Mathew, Mathew
1 / 3 shared
Cheng, Kai-Yuan
1 / 2 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Bijukumar, Divya Rani
  • Barba, M.
  • Pourzal, R.
  • Neto, M.
  • Mathew, Mathew
  • Cheng, Kai-Yuan
OrganizationsLocationPeople

article

Hip implant modular junction: The role of CoCrMo alloy microstructure on fretting-corrosion.

  • Bijukumar, Divya Rani
  • Barba, M.
  • Pourzal, R.
  • Neto, M.
  • Mathew, Mathew
  • Cheng, Kai-Yuan
  • Manthe, J.
Abstract

Cobalt-chromium-molybdenum (CoCrMo) alloy is one of the most used metals in total hip replacement (THR) due to the alloy's superior corrosion qualities and biocompatibility. Over time these prostheses may undergo wear and corrosion processes in a synergistic process known as tribocorrosion. Implant retrieval studies have shown that damage patterns on THR modular junction surfaces indicating specifically in vivo fretting-corrosion to take place. To date, there have been no studies on the fretting-corrosion behaviors of CoCrMo alloy under the consideration of specific microstructural features. A custom-built flat-on-flat fretting-corrosion setup was utilized to test the synergistic tribocorrosion behavior of fretting-corrosion. The difference in microstructure was generated through the cutting orientations of the transverse and the longitudinal direction of the bar stock material, where the longitudinal cut exhibits a characteristic banded microstructure (banded group) and the transverse cut a homogenous microstructure (unbanded group). A three-electrode system was employed to monitor the induced currents. Two different types of electrolytes were used in the current study: 1. Bovine calf serum (BCS-30 g/L protein) (normal conditions) 2. BCS with Lipopolysaccharide (LPS, 0.15 μg/ml) (simulated infectious conditions). In the free potential mode, banded samples showed an increased potential compared to the unbanded samples. In potentiostatic conditions, the banded group also exhibited a higher induced current in both electrolyte environments, indicating more corrosion loss. Both Nyquist and Bode plots showed both orientations of metal becoming more corrosion resistant post-fretting when compared to pre-fretting data. The longitudinal group at OCP demonstrated a unique shape of the fretting-loop, which might be related to tribochemical reactions. Based on the mechanical, electrochemical, and surface characterization data, the transverse group (unbanded) microstructures demonstrates a higher resistance to fretting-corrosion damage.

Topics
  • impedance spectroscopy
  • microstructure
  • surface
  • molybdenum
  • corrosion
  • chromium
  • cobalt
  • hot isostatic pressing
  • biocompatibility