Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Begiristain, Eider

  • Google
  • 1
  • 6
  • 26

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Measuring the elastic modulus of soft biomaterials using nanoindentation26citations

Places of action

Chart of shared publication
Sánchez-Abella, Laura
1 / 1 shared
Xu, Dichu
1 / 7 shared
Harvey, Terence
1 / 12 shared
Cook, Richard
1 / 16 shared
Browne, Martin
1 / 9 shared
Domínguez, Cristina
1 / 2 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Sánchez-Abella, Laura
  • Xu, Dichu
  • Harvey, Terence
  • Cook, Richard
  • Browne, Martin
  • Domínguez, Cristina
OrganizationsLocationPeople

article

Measuring the elastic modulus of soft biomaterials using nanoindentation

  • Sánchez-Abella, Laura
  • Begiristain, Eider
  • Xu, Dichu
  • Harvey, Terence
  • Cook, Richard
  • Browne, Martin
  • Domínguez, Cristina
Abstract

The measurement of the elastic modulus of soft biomaterials via nanoindentation relies on the accurate determination of the zero-point of the tip-sample interaction on which the depth of penetration into the sample is based. Non-cantilever based nanoindentation systems were originally designed for hard materials, and therefore monitoring the zero-point contact presents a significant challenge for the characterisation of very soft biomaterials. This study investigates the ability of non-cantilever based nanoindentation to differentiate between hydrogels with elastic moduli on the order of single kiloPascals (kPa) using a bespoke soft contact protocol and low flexural stiffness of instrument. Polyethylene glycol (PEG) hydrogels were fabricated as a model system with a range of elastic moduli by varying the polymer concentration and degree of crosslinking. Elastic modulus values were calculated using the Oliver-Pharr method, Hertzian contact model, as well as a viscoelastic model to account for the time-dependent behaviour of the gels. The stiffness measurements were validated by measuring cantilever beams with the equivalent flexural stiffness to that of the PEG hydrogels being tested. The results demonstrated a high repeatability of the measurements, enabling differentiation between hydrogels with elastic moduli in the single kPa to hundreds of kPa range.

Topics
  • impedance spectroscopy
  • polymer
  • nanoindentation
  • biomaterials