Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Garbow, Joel

  • Google
  • 1
  • 5
  • 15

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Estimation of the mechanical properties of a transversely isotropic material from shear wave fields via artificial neural networks.15citations

Places of action

Chart of shared publication
Okamoto, Ruth
1 / 1 shared
Hou, Zuoxian
1 / 1 shared
Guertler, Charlotte
1 / 2 shared
Chen, H.
1 / 48 shared
Bayly, Philip
1 / 1 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Okamoto, Ruth
  • Hou, Zuoxian
  • Guertler, Charlotte
  • Chen, H.
  • Bayly, Philip
OrganizationsLocationPeople

article

Estimation of the mechanical properties of a transversely isotropic material from shear wave fields via artificial neural networks.

  • Okamoto, Ruth
  • Hou, Zuoxian
  • Guertler, Charlotte
  • Chen, H.
  • Garbow, Joel
  • Bayly, Philip
Abstract

Artificial neural networks (ANN), established tools in machine learning, are applied to the problem of estimating parameters of a transversely isotropic (TI) material model using data from magnetic resonance elastography (MRE) and diffusion tensor imaging (DTI). We use neural networks to estimate parameters from experimental measurements of ultrasound-induced shear waves after training on analogous data from simulations of a computer model with similar loading, geometry, and boundary conditions. Strain ratios and shear-wave speeds (from MRE) and fiber direction (the direction of maximum diffusivity from diffusion tensor imaging (DTI)) are used as inputs to neural networks trained to estimate the parameters of a TI material (baseline shear modulus μ, shear anisotropy φ, and tensile anisotropy ζ). Ensembles of neural networks are applied to obtain distributions of parameter estimates. The robustness of this approach is assessed by quantifying the sensitivity of property estimates to assumptions in modeling (such as assumed loss factor) and choices in fitting (such as the size of the neural network). This study demonstrates the successful application of simulation-trained neural networks to estimate anisotropic material parameters from complementary MRE and DTI imaging data.

Topics
  • impedance spectroscopy
  • simulation
  • anisotropic
  • isotropic
  • diffusivity
  • machine learning