People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dymek, Stanislaw
AGH University of Krakow
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2022Ni–Cr Powders Modified with Rhenium as a Novel Coating Material—Physical Properties, Microstructure, and Behavior in Plasma Plumecitations
- 2021Laser cladding of bioactive glass coating on pure titanium substrate with highly refined grain structurecitations
- 2019Bioactive glass S520 laser cladding on ultrafine-grained pure titanium substrates
- 2015Microstructural characterization of nanostructured supersonic sprayed Ni-Sn coatings after wear tests at elevated temperature
Places of action
Organizations | Location | People |
---|
article
Laser cladding of bioactive glass coating on pure titanium substrate with highly refined grain structure
Abstract
<p>Free from toxic elements biomaterial potentially applicable for load bearing biomedical implants was obtained for the first time by laser cladding of S520 bioactive glass onto ultrafine-grained commercially pure titanium. The cladding process affected the refined structure of the substrate inducing martensitic transformation near its surface. The α’ acicular martensite gradually passes into relatively large grains with increasing distance from the substrate surface, which subsequently are transformed into smaller grains of about 2 μm in diameter. Both the melted zone, where the martensite crystalline structure was found, and the HAZ are characterised by relatively lower hardness in comparison with that of the substrate core indicating increased ductility. Such a combination of zones with different properties may have a synergistic effect and is beneficial for the obtained biomaterial. A characteristic region in the form of about 3 μm width band was formed in the melted zone at about 10 μm below the titanium surface. The results of EDS analysis indicate that several glass elements moved into the region while the titanium content in the same area was decreased. High bioactivity of the coated S520 glass was revealed by in vitro testing with SBF solution and almost complete reduction of P concentration occurred after 14 days.</p>