Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Espino, Daniel

  • Google
  • 5
  • 4
  • 66

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2024Frequency and time dependent viscoelastic characterization of pediatric porcine brain tissue in compression5citations
  • 2021Investigation of the compressive viscoelastic properties of brain tissue under time and frequency dependent loading conditions14citations
  • 2020Dynamic mechanical characterization and viscoelastic modeling of bovine brain tissue24citations
  • 2019Frequency dependent viscoelastic properties of porcine brain tissue17citations
  • 2017In vitro oxidative degradation of a spinal posterior dynamic stabilisation device6citations

Places of action

Chart of shared publication
Li, Weiqi
4 / 4 shared
Shepherd, Duncan Et
4 / 24 shared
Shepherd, Duncan
1 / 2 shared
Lawless, Bernard
1 / 1 shared
Chart of publication period
2024
2021
2020
2019
2017

Co-Authors (by relevance)

  • Li, Weiqi
  • Shepherd, Duncan Et
  • Shepherd, Duncan
  • Lawless, Bernard
OrganizationsLocationPeople

article

Dynamic mechanical characterization and viscoelastic modeling of bovine brain tissue

  • Espino, Daniel
  • Li, Weiqi
  • Shepherd, Duncan Et
Abstract

Brain tissue is vulnerable and sensitive, predisposed to potential damage under various conditions of mechanical loading. Although its material properties have been investigated extensively, the frequency-dependent viscoelastic characterization is currently limited. Computational models can provide a non-invasive method by which to analyze brain injuries and predict the mechanical response of the tissue. The brain injuries are expected to be induced by dynamic loading, mostly in compression and measurement of dynamic viscoelastic properties are essential to improve the accuracy and variety of finite element simulations on brain tissue. Thus, the aim of this study was to investigate the compressive frequency-dependent properties of brain tissue and present a mathematical model in the frequency domain to capture the tissue behavior based on experimental results. Bovine brain specimens, obtained from four locations of corona radiata, corpus callosum, basal ganglia and cortex, were tested under compression using dynamic mechanical analysis over a range of frequencies between 0.5 and 35 Hz to characterize the regional and directional response of the tissue. The compressive dynamic properties of bovine brain tissue were heterogenous for regions but not sensitive to orientation showing frequency dependent statistical results, with viscoelastic properties increasing with frequency. The mean storage and loss modulus were found to be 12.41 kPa and 5.54 kPa, respectively. The material parameters were obtained using the linear viscoelastic model in the frequency domain and the numeric simulation can capture the compressive mechanical behavior of bovine brain tissue across a range of frequencies. The frequency-dependent viscoelastic characterization of brain tissue will improve the fidelity of the computational models of the head and provide essential information to the prediction and analysis of brain injuries in clinical treatments.

Topics
  • impedance spectroscopy
  • simulation
  • dynamic mechanical analysis