Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Piva, A. M. O. Dal

  • Google
  • 1
  • 5
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Effect of microwave crystallization on the wear resistance of reinforced glass-ceramics4citations

Places of action

Chart of shared publication
Tribst, J. P. M.
1 / 9 shared
Saavedra, G. S. F. A.
1 / 3 shared
Carvalho, A. B. G. De
1 / 1 shared
Werner, A.
1 / 13 shared
Kleverlaan, Cornelis Johannes
1 / 105 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Tribst, J. P. M.
  • Saavedra, G. S. F. A.
  • Carvalho, A. B. G. De
  • Werner, A.
  • Kleverlaan, Cornelis Johannes
OrganizationsLocationPeople

article

Effect of microwave crystallization on the wear resistance of reinforced glass-ceramics

  • Tribst, J. P. M.
  • Saavedra, G. S. F. A.
  • Piva, A. M. O. Dal
  • Carvalho, A. B. G. De
  • Werner, A.
  • Kleverlaan, Cornelis Johannes
Abstract

<p>This study compared the wear resistance of different reinforced glass-ceramics crystalized by conventional or microwave firing. The wear rate of three ceramics [one lithium disilicate ceramic (LD): IPS e.max CAD – Ivoclar Vivadent; and two zirconia reinforced lithium silicates: Suprinity – VITA Zahnfabrik (ZLS1) and Celtra Duo – Dentsply (ZLS2)] crystallized by conventional (c) or microwave (mw) firing protocols were collected according to the contact- [two-body (n = 20/gr)] and contact-free wear tests [three-body (n = 20/gr)]. After wear tests performed on ACTA wear machine, mean surface roughness (Ra) and Scanning Electron Microscopy (SEM) analyzes were performed to evaluate the surface alterations. The wear and roughness data (in μm) were evaluated using two-way ANOVA and Tukey post-hoc test (α = 0.05). Two-body wear test revealed that ZLS1 (1.30 ± 1.79)<sup>A</sup> showed higher wear rate than LD (0.79 ± 2.15)<sup>B</sup> and ZLS2 (0.85 ± 0.94)<sup>B</sup>, regardless the crystallization approach. For three-body test, conventional crystallization (0.62 ± 0.4)<sup>A</sup> showed higher wear rates than microwave (0.22 ± 0.71)<sup>B</sup>; while the type of ceramic was not significant. The crystallization protocol (p &lt; 0.001) and ceramic material (p = 0.001) affected the surface roughness in the three-body; whereas the two-body test, only the crystallization protocol (p = 0.046). SEM analysis showed a similar and smother surface morphology for LD and ZLS2 compared to ZLS1. Conventional crystallization showed materials more prone to wear than the microwave, in the presence of food bolus. Therefore, the microwave crystallization can be suggested as an alternative to improve the evaluated glass-ceramics wear resistance.</p>

Topics
  • surface
  • scanning electron microscopy
  • glass
  • glass
  • wear resistance
  • wear test
  • Lithium
  • ceramic
  • crystallization
  • collision-induced dissociation