Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Baudín, Carmen

  • Google
  • 1
  • 8
  • 20

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Mechanical properties of zirconia ceramics biomimetically coated with calcium deficient hydroxyapatite20citations

Places of action

Chart of shared publication
Gajovic, Andreja
1 / 3 shared
Deluca, Marco
1 / 20 shared
Sikiric, Maja Dutour
1 / 1 shared
Ceh, Miran
1 / 3 shared
Salamon, Krešimir
1 / 7 shared
Plodinec, Milivoj
1 / 8 shared
Bermejo, Raúl
1 / 38 shared
Macan, Jelena
1 / 4 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Gajovic, Andreja
  • Deluca, Marco
  • Sikiric, Maja Dutour
  • Ceh, Miran
  • Salamon, Krešimir
  • Plodinec, Milivoj
  • Bermejo, Raúl
  • Macan, Jelena
OrganizationsLocationPeople

article

Mechanical properties of zirconia ceramics biomimetically coated with calcium deficient hydroxyapatite

  • Gajovic, Andreja
  • Deluca, Marco
  • Sikiric, Maja Dutour
  • Ceh, Miran
  • Salamon, Krešimir
  • Baudín, Carmen
  • Plodinec, Milivoj
  • Bermejo, Raúl
  • Macan, Jelena
Abstract

<p>Mechanical properties and stability of porous tetragonal yttria-stabilised zirconia (Y-TZ) ceramics, biomimetically coated with calcium deficient hydroxyapatite (CaDHA) to obtain a bioactive material, were investigated. The 5.7 mol% yttria-stabilised tetragonal zirconia was obtained by sol-gel process and sintered at different temperatures to obtain a homogeneous and porous structure whose strength would match that of human bone. Sufficient strength was achieved by sintering at 1400 °C. The CaDHA coating was obtained at room temperature by a simplified preparation method consisting of immersion of the Y-TZ ceramics into a calcifying solution, after a short surface pretreatment in HCl. Although HAP or β-TCP are more frequently used, CaDHA was chosen due to its structural similarity to the bone mineral and ability to support bone ingrowth to a greater extent than biphasic calcium phosphates. To verify the applicability CaDHA coatings, we tested their adherence to Y-TZ ceramics for the first time to the best of our knowledge. Vickers hardness (3.8 ± 0.2 GPa) reflected the hardness of underlying ceramic. The tensile strength (269 ± 52 MPa) and Weibull modulus (5) of the obtained biomaterials matched or exceeded those of bone. There was no statistical difference in the tensile strength between the coated (269 ± 52 MPa) and the uncoated (239 ± 46 MPa) ceramics. The Y-TZ-CaDHA coating system presented adequate structural integrity under scratch test with critical load for coating cracking of 18 ± 2 N. These results indicate the potential of the prepared bioceramic to be used as bone implants.</p>

Topics
  • porous
  • mineral
  • surface
  • strength
  • hardness
  • tensile strength
  • ceramic
  • Calcium
  • biomaterials
  • sintering