People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bermejo, Raúl
Montanuniversität Leoben
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (38/38 displayed)
- 20243D-printed alumina-based ceramics with spatially resolved porositycitations
- 2024Effect of airborne particle abrasion and regeneration firing on the strength of 3D-printed 3Y and 5Y zirconia ceramicscitations
- 2023The effect of liquid phase chemistry on the densification and strength of cold sintered ZnOcitations
- 2023Stereolithographic 3D Printing of Ceramics: Challenges and Opportunities for Structural Integritycitations
- 2023Highly textured 3D-printed translucent alumina through pressure-assisted sinteringcitations
- 2023Press-compaction-assisted binder jetting of textured ceramicscitations
- 2023Effect of airborne particle abrasion and regeneration firing on the strength of 3D-printed 3Y and 5Y zirconia ceramicscitations
- 2023High-temperature fracture behaviour of layered alumina ceramics with textured microstructurecitations
- 2022Effect of airborne-particle abrasion of yttria-containing zirconia dental ceramics on mechanical properties before and after regeneration firingcitations
- 2022Contact damage tolerance of alumina‐based layered ceramics with tailored microstructurescitations
- 2021Fabrication of 3D metal-ceramic (Al-AlN) architectures using laser-powder bed fusion processcitations
- 2021Additive manufacturing of highly textured alumina ceramicscitations
- 2021Effects of acid leaching treatment of soda lime silicate glass on crack initiation and fracturecitations
- 2021Additive manufacturing of high-strength alumina through a multi-material approachcitations
- 2020Influence of the Test Configuration and Temperature on the Mechanical Behaviour of WC-Cocitations
- 2020Mechanical properties of zirconia ceramics biomimetically coated with calcium deficient hydroxyapatitecitations
- 2020Microstructure, ionic conductivity and mechanical properties of tape-cast Li1.5Al0.5Ti1.5P3O12 electrolyte sheetscitations
- 2020Strength of additive manufactured aluminacitations
- 2020Design of damage tolerant and crack-free layered ceramics with textured microstructurecitations
- 2019Mechanical strength of cold-sintered zinc oxide under biaxial bendingcitations
- 2019Strength limits in mesoscaled 3Y-TZP ceramics for micro-surgical instrumentscitations
- 2018Mechanical characterization of Ti(C,N)-based cermets fabricated through different colloidal processing routescitations
- 2018What is the tensile strength of a ceramic to be used in numerical models for predicting crack initiation?citations
- 2018Influence of the colloidal processing route on the mechanical properties of Ti(C,N)-based cermets
- 2017Fracture of advanced ceramics and brittle components
- 2017“Toward seashells under stress”citations
- 2017Effect of metallization on the strength and fracture behaviour of functional co-fired multilayer ceramicscitations
- 2017Novel colloidal approach for the microstructural improvement in Ti(C,N)/FeNi cermetscitations
- 2016Hierarchical Architectures to Enhance Structural and Functional Properties of Brittle Materialscitations
- 2016Assessment of crack-related problems in layered ceramics using the finite fracture mechanics and coupled stress-energy criterioncitations
- 2016Residual lifetime determination of low temperature co-fired ceramics
- 2014On the determination of the stress-free temperature for alumina–zirconia multilayer structurescitations
- 2013Influence of the residual stresses on the crack deflection in ceramic laminates
- 2012Mechanical properties of low temperature co-fired ceramics
- 2010Optimal strength and fracture toughness of damage tolerant multilayer ceramics
- 2010Fracture behaviour of low temperature cofired ceramics under biaxial loading
- 2009Mechanical behaviour of low temperature co-fired ceramics under biaxial loading
- 2007High-temperature mechanical behaviour of flaw tolerant alumina–zirconia multilayered ceramicscitations
Places of action
Organizations | Location | People |
---|
article
Mechanical properties of zirconia ceramics biomimetically coated with calcium deficient hydroxyapatite
Abstract
<p>Mechanical properties and stability of porous tetragonal yttria-stabilised zirconia (Y-TZ) ceramics, biomimetically coated with calcium deficient hydroxyapatite (CaDHA) to obtain a bioactive material, were investigated. The 5.7 mol% yttria-stabilised tetragonal zirconia was obtained by sol-gel process and sintered at different temperatures to obtain a homogeneous and porous structure whose strength would match that of human bone. Sufficient strength was achieved by sintering at 1400 °C. The CaDHA coating was obtained at room temperature by a simplified preparation method consisting of immersion of the Y-TZ ceramics into a calcifying solution, after a short surface pretreatment in HCl. Although HAP or β-TCP are more frequently used, CaDHA was chosen due to its structural similarity to the bone mineral and ability to support bone ingrowth to a greater extent than biphasic calcium phosphates. To verify the applicability CaDHA coatings, we tested their adherence to Y-TZ ceramics for the first time to the best of our knowledge. Vickers hardness (3.8 ± 0.2 GPa) reflected the hardness of underlying ceramic. The tensile strength (269 ± 52 MPa) and Weibull modulus (5) of the obtained biomaterials matched or exceeded those of bone. There was no statistical difference in the tensile strength between the coated (269 ± 52 MPa) and the uncoated (239 ± 46 MPa) ceramics. The Y-TZ-CaDHA coating system presented adequate structural integrity under scratch test with critical load for coating cracking of 18 ± 2 N. These results indicate the potential of the prepared bioceramic to be used as bone implants.</p>