Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mahmood, Humaira

  • Google
  • 1
  • 5
  • 19

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020A method for the assessment of the coefficient of friction of articular cartilage and a replacement biomaterial19citations

Places of action

Chart of shared publication
Espino, Daniel M.
1 / 5 shared
Dearn, K. D.
1 / 11 shared
Shepherd, Duncan Et
1 / 24 shared
Eckold, David
1 / 3 shared
Stead, Iestyn
1 / 1 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Espino, Daniel M.
  • Dearn, K. D.
  • Shepherd, Duncan Et
  • Eckold, David
  • Stead, Iestyn
OrganizationsLocationPeople

article

A method for the assessment of the coefficient of friction of articular cartilage and a replacement biomaterial

  • Mahmood, Humaira
  • Espino, Daniel M.
  • Dearn, K. D.
  • Shepherd, Duncan Et
  • Eckold, David
  • Stead, Iestyn
Abstract

<p>Replacement biomaterials for articular cartilage should encourage a coefficient of friction similar to the natural joint. Whilst the literature has assessed the coefficient of friction of articular cartilage against that of a potential biomaterial, it is unknown what the friction of articular cartilage in sliding against a surface defect, repaired with a biomaterial is. This evaluation is crucial to allow for the development of effective biomaterials to closely have the behaviour of articular cartilage. Thus, the aim of this study was to develop a novel technique for the assessment of the coefficient of friction of replacement biomaterials within articular cartilage, with this original testing configuration. For this study, a biomaterial was induced within an artificial defect perforated on the surface of bovine articular cartilage, whilst the material was assessed in sliding against articular cartilage itself. Calcium alginate was selected as the sample biomaterial for evaluation in this study. The tests were performed in sliding on a pin-on-disc tribometer in Ringer's solution. Two further tests were carried out, one as a benchmark comparison of a cartilage pin against a cartilage plate, as well as a cartilage pin against an aluminium plate. A constant induced stress of 0.06 MPa was applied at a frequency of 1 Hz. For the cartilage-cartilage, cartilage/hydrogel-cartilage and cartilage-aluminium test, the overall median coefficient of friction extracted across six repeats was of 0.36, 0.38 and 0.32, respectively. Statistical insignificance was identified across all three groups tested (p &gt; 0.05). Similarity was observed in the coefficient of friction of cartilage-cartilage and cartilage/hydrogel-cartilage tests, however high-speed data identified the greatest wear for the cartilage/hydrogel-cartilage test.</p>

Topics
  • impedance spectroscopy
  • surface
  • aluminium
  • defect
  • Calcium
  • biomaterials
  • coefficient of friction