Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Villanueva, Jose

  • Google
  • 1
  • 7
  • 14

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Physicochemical and in-vitro biological analysis of bio-functionalized titanium samples in a protein-rich medium14citations

Places of action

Chart of shared publication
Rao, Shradha
1 / 1 shared
Takoudis, Christos
1 / 1 shared
Mathew, Mathew T.
1 / 5 shared
Astaneh, Sarah Hashemi
1 / 1 shared
Matias De Souza, Júlio César
1 / 75 shared
Silva, Filipe
1 / 19 shared
Bijukumar, Divya
1 / 1 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Rao, Shradha
  • Takoudis, Christos
  • Mathew, Mathew T.
  • Astaneh, Sarah Hashemi
  • Matias De Souza, Júlio César
  • Silva, Filipe
  • Bijukumar, Divya
OrganizationsLocationPeople

article

Physicochemical and in-vitro biological analysis of bio-functionalized titanium samples in a protein-rich medium

  • Rao, Shradha
  • Takoudis, Christos
  • Mathew, Mathew T.
  • Villanueva, Jose
  • Astaneh, Sarah Hashemi
  • Matias De Souza, Júlio César
  • Silva, Filipe
  • Bijukumar, Divya
Abstract

<p>The long-term survivability of the implants is strongly influenced by the osseointegration aspects of the metal-bone interface. In this study, biological materials such as fibrinogen and fibrin are used to functionalize titanium surfaces to enhance the ability of implants to interact with human tissues for accelerated osseointegration. The biofunctionalized samples that were assessed by White Light Microscope, Scanning Electron Microscope and Water Contact Angle for surface properties proved samples etched with HF/HNO<sub>3</sub>to be better than HCl/H<sub>2</sub>SO<sub>4</sub>in terms of having optimum roughness and hydrophilicity for our further experiments. To further investigate the in vitro osseointegration of the biofunctionalized samples, Osteoblasts were cultured on the surfaces to assess cell proliferation, adhesion, gene expression as well as the mineralization process. Further bacterial adhesion (Enterococcus faecalis)and electrochemical evaluation of surface coating stability were carried out. Results of the study show that the biofunctionalized surfaces provided high cell proliferation, adherence, gene expression, and mineralization compared to other control surfaces hence proving them to have efficient and enhanced osseointegration. Also, bacterial adhesion studies show that there is no augmented growth of bacteria on the biofunctionalized samples in comparison to control surfaces. Electrochemical studies proved the existence of a stable protein layer on the bio functionalized surfaces. Such a method can reduce the time for osseointegration that can decrease risks in early failures of implants due to its enhanced hydrophilicity and cytocompatibility.</p>

Topics
  • impedance spectroscopy
  • surface
  • experiment
  • titanium
  • biological material