Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bezuidenhout, Deon

  • Google
  • 1
  • 4
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Suitability of developed composite materials for meniscal replacement: mechanical, friction and wear evaluation5citations

Places of action

Chart of shared publication
Inyang, Adijat Omuwumi
1 / 1 shared
Abdalrahman, Tamer
1 / 1 shared
Vaughan, Christopher Leonard
1 / 1 shared
Bowen, James
1 / 51 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Inyang, Adijat Omuwumi
  • Abdalrahman, Tamer
  • Vaughan, Christopher Leonard
  • Bowen, James
OrganizationsLocationPeople

article

Suitability of developed composite materials for meniscal replacement: mechanical, friction and wear evaluation

  • Inyang, Adijat Omuwumi
  • Abdalrahman, Tamer
  • Bezuidenhout, Deon
  • Vaughan, Christopher Leonard
  • Bowen, James
Abstract

The meniscus is a complex and frequently damaged tissue which requires a substitute capable of reproducing similar biomechanical functions. This study aims to develop a synthetic meniscal substitute that can mimic the function of the native meniscus.Medical grade silicones reinforced with nylon were fabricated using compression moulding and evaluated for mechanical and tribological properties. The optimal properties were obtained with tensile modulus increased considerably from 10.7 ± 2.9 MPa to 114.6 ± 20.9 MPa while compressive modulus was found to reduce from 2.5 ± 0.6 MPa to 0.7 ± 0.3 MPa. Using a tribometer, the coefficient of friction of 0.08 ± 0.02 was measured at the end of the 100,000 cycles.The developed composite could be an auspicious substitute for the native meniscus and the knowledge gained from this study is useful as it enhances the understanding of a potentially suitable material for meniscal implants.

Topics
  • impedance spectroscopy
  • composite
  • Silicon
  • coefficient of friction