People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sercombe, Tim
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2023On the importance of nano-oxide control in laser powder bed fusion manufactured Ni-based alloys to enhance fracture propertiescitations
- 2023Dynamic constitutive behavior of LPBFed metal alloyscitations
- 2022Bioactivity and biodegradability of high temperature sintered 58S ceramicscitations
- 2022High strain-rate response of additively manufactured light metal alloyscitations
- 2020The effect of drying method on the surface structure of mesoporous sol-gel derived bioactive glass-ceramiccitations
- 2018Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprintingcitations
- 2017On the Breakdown of SiC during the Selective Laser Melting of Aluminum Matrix Compositescitations
- 2016A 3D printed superconducting aluminium microwave cavitycitations
- 2016Selective laser melting of Zr-based bulk metallic glassescitations
- 2016Selective laser melting of Al-12Si alloy: Enhanced densification via powder dryingcitations
- 2011Manufacture by selective laser melting and mechanical behavior of a biomedical Ti-24Nb-4Zr-8Sn alloycitations
- 2008Heat treatment of Ti-6Al-7Nb components produced by selective laser meltingcitations
- 2008Process repeatability and sources of error in indirect SLS of aluminiumcitations
- 2007The Effect of Particle Shape on the Sintering of Aluminumcitations
- 2006Process shrinkage and accuracy during indirect laser sintering of aluminiumcitations
- 2005Sintering of maraging steel with phosphorous additionscitations
- 2004On the role of magnesium and nitrogen in the infiltration of aluminium by aluminium for rapid prototyping applicationscitations
- 2004On the role of tin in the infiltration of aluminium by aluminium for rapid prototyping applicationscitations
- 2003Sintering of freeformed maraging steel with boron additionscitations
- 2003The effect of resin type on the sintering of freeformed maraging steelcitations
- 2003On the sintering of uncompacted, pre-alloyed Al powder alloyscitations
- 2003Rapid manufacturing of aluminum componentscitations
- 2001Liquid phase sintering of aluminium alloyscitations
Places of action
Organizations | Location | People |
---|
article
Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting
Abstract
<p>Hydrogels comprised of alginate and gelatin have demonstrated potential as biomaterials in three dimensional (3D) bioprinting applications. However, as with all hydrogel-based biomaterials used in extrusion-based bioprinting, many parameters influence their performance and there is limited data characterising the behaviour of alginate-gelatin (Alg-Gel) hydrogels. Here we investigated nine Alg-Gel blends by varying the individual constituent concentrations. We tested samples for printability and print accuracy, compressive behaviour and change over time, and viability of encapsulated mesenchymal stem cells in bioprinted constructs. Printability tests showed a decrease in strand width with increasing concentrations of Alg-Gel. However due to the increased viscosity associated with the higher Alg-Gel concentrations, the minimum width was found to be 0.32 mm before blends became too viscous to print. Similarly, printing accuracy was increased in higher concentrations, exceeding 90% in some blends. Mechanical properties were assessed through uniaxial compression testing and it was found that increasing concentrations of both Alg and Gel resulted in higher compressive modulus. We also deemed 15 min crosslinking in calcium chloride to be sufficient. From our data, we propose a blend of 7%Alg-8%Gel that yields high printability, mechanical strength and stiffness, and cell viability. However, we found the compressive behaviour of Alg-Gel to reduce rapidly over time and especially when incubated at 37 °C. Here we have reported relevant data on Alg-Gel hydrogels for bioprinting. We tested for biomaterial properties and show that these hydrogels have many desirable characteristics that are highly tunable. Though further work is needed before practical use in vivo can be achieved.</p>