People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gn, Duda
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Titanium vs PEO Surface-Modified Magnesium Plate Fixation in a Mandible Bone Healing Model in Sheep.citations
- 2024Titanium versus plasma electrolytic oxidation surface-modified magnesium miniplates in a forehead secondary fracture healing model in sheep.citations
- 2022Towards mechanobiologically optimized mandible reconstruction: CAD/CAM miniplates vs. reconstruction plates for fibula free flap fixation: A finite element study.citations
- 2021Role of extracellular matrix structural components and tissue mechanics in the development of postoperative pancreatic fistula.citations
- 2019From macroscopic mechanics to cell-effective stiffness within highly aligned macroporous collagen scaffolds.citations
- 2019Collagen I-based scaffolds negatively impact fracture healing in a mouse-osteotomy-model although used routinely in research and clinical application.citations
- 2018Correlations between nanostructure and micromechanical properties of healing bonecitations
- 2016Hydrogels with tunable stress relaxation regulate stem cell fate and activity.citations
- 2011Spatial-temporal mapping of bone structural and elastic properties in a sheep model following osteotomycitations
- 2011Poorly Ordered Bone as an Endogenous Scaffold for the Deposition of Highly Oriented Lamellar Tissue in Rapidly Growing Ovine Bonecitations
- 2011The organization of the osteocyte network mirrors the extracellular matrix orientation in bonecitations
Places of action
Organizations | Location | People |
---|
article
Correlations between nanostructure and micromechanical properties of healing bone
Abstract
All hierarchical levels in bone are known to contribute to its mechanical behavior. The basic building block is the mineralized collagen fibril which is assembled into larger structures with varying fibrillar organization. The collagen organization increases from unordered woven bone in the callus which is gradually replaced by higher ordered lamellar bone during bone development and healing and finally results in cortical lamellar bone with highest degree of organization. The structural and mechanical description of these organizational motifs is not yet complete. We investigated a femoral osteotomy mouse model and analyzed newly formed callus tissue and mature lamellar bone in the cortex. This model exhibits three bone types with different fibrillar organization: (i) woven, (ii) moderate lamellar and (iii) lamellar. Using high resolution synchrotron small angle X-ray scattering in combination with back-scattered electron imaging we characterized the ultrastructure of the different regions in terms of degree of mineralization, averaged mineral particle thickness and mineral particle orientation. We further used microindentation to correlate hardness, induced crack lengths and crack patterns with the bone ultrastructure. The newly formed callus tissue contains highly mineralized woven bone islands, featuring thick but poorly ordered mineral particles. Such islands are surrounded by layers of lamellar bone with a low mineralization level and thin but well aligned particles. Callus tissue shows lower hardness values and longer cracks than the cortex. Callus woven bone exhibits shorter cracks than callus lamellar bone. However, the poorly mineralized callus lamellar bone shows crack propagation mechanisms similar to cortical bone due to its very similar lamellar organization and high degree of mineral particle orientation. In conclusion we demonstrate that woven and increasingly higher oriented lamellar bone do not only differ in collagen fibril organization, but also that the amount, orientation and different shape of mineral particles are also likely to contribute to the reduced mechanical competence of woven as compared to lamellar bone. This may explain why many organisms replace less organized bone types with higher organized ones.