People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Katsamenis, Orestis L.
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 20233D printing of personalised carvedilol tablets using selective laser sinteringcitations
- 2020Fabrication of an osmotic 3D printed solid dosage form for controlled release of active pharmaceutical ingredientscitations
- 2018Controlled release of 5-Fluorouracil from alginate beads encapsulated in 3D printed pH-responsive solid dosage formscitations
- 20173D printed oral solid dosage forms containing hydrochlorothiazide for controlled drug deliverycitations
- 2017Deformation mechanisms of idealised cermets under multi-axial loadingcitations
- 2017Characterization and mapping of rolling contact fatigue in rail-axle bearingscitations
- 20153-D analysis of fatigue crack behaviour in a shot peened steam turbine blade materialcitations
- 2014Nanomechanical assessment of human and murine collagen fibrils via atomic force microscopy cantilever-based nanoindentationcitations
- 2013A novel videography method for generating crack-extension resistance curves in small bone samplescitations
- 2012Mechanism of co-nanoprecipitation of organic actives and block copolymers in a microfluidic environmentcitations
- 2012Bone matrix material properties on the micro- and nanoscale
- 2010Preparation and characterization of bioceramics produced from calcium phosphate cementscitations
Places of action
Organizations | Location | People |
---|
article
Nanomechanical assessment of human and murine collagen fibrils via atomic force microscopy cantilever-based nanoindentation
Abstract
The nanomechanical assessment of collagen fibrils via atomic force microscopy (AFM) is of increasing interest within the biomedical research community. In contrast to conventional nanoindentation there exists no common standard for conducting experiments and analysis of data. Currently used analysis approaches vary between studies and validation of quantitative results is usually not performed, which makes comparison of data from different studies difficult. Also there are no recommendations with regards to the maximum indentation depth that should not be exceeded to avoid substrate effects. Here we present a methodology and analysis approach for AFM cantilever-based nanoindentation experiments that allows efficient use of captured data and relying on a reference sample for determination of tip shape. Further we show experimental evidence that maximum indentation depth on collagen fibrils should be lower than 10-15% of the height of the fibril to avoid substrate effects and we show comparisons between our and other approaches used in previous works. While our analysis approach yields similar values for indentation modulus compared to the Oliver-Pharr method we found that Hertzian analysis yielded significantly lower values. Applying our approach we successfully and efficiently indented collagen fibrils from human bronchi, which were about 30. nm in size, considerably smaller compared to collagen fibrils obtained from murine tail-tendon. In addition, derived mechanical parameters of collagen fibrils are in agreement with data previously published. To establish a quantitative validation we compared indentation results from conventional and AFM cantilever-based nanoindentation on polymeric samples with known mechanical properties. Importantly we can show that our approach yields similar results when compared to conventional nanoindentation on polymer samples. Introducing an approach that is reliable, efficient and taking into account the AFM tip shape, we anticipate that the present work may act as a guideline for conducting AFM cantilever-based nanoindentation of collagen fibrils. This may aid understanding of collagen-related diseases such as asthma, lung fibrosis or bone disease with potential alterations of collagen fibril mechanics. ?? 2014.