People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zekonyte, Jurgita
University of Portsmouth
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2022Investigating the Effects of H2O Interaction with Rainscreen Façade ACMs During Fire Exposurecitations
- 2021The effect of temperature on the erosion of polyurethane coatings for wind turbine leading edge protectioncitations
- 2021Wear of 17-4 PH stainless steel patterned surfaces fabricated using selective laser meltingcitations
- 2020Characterization of Nano-Mechanical, Surface and Thermal Properties of Hemp Fiber-Reinforced Polycaprolactone (HF/PCL) Biocompositescitations
- 2020Planning for metal additive manufacturingcitations
- 2020Structure and mechanical properties of Ce-La alloys containing 3- 10 wt. % Lacitations
- 2016Titanate nanotubes for reinforcement of a poly(ethylene oxide)/chitosan polymer matrixcitations
- 2016Titanate nanotubes for reinforcement of a poly(ethylene oxide)/chitosan polymer matrixcitations
- 2016Titanate nanotubes for reinforcement of a poly(ethylene oxide)/chitosan polymer matrixcitations
- 2015Friction force microscopy analysis of self-adaptive W-S-C coatings: nanoscale friction and wearcitations
- 2015Friction force microscopy analysis of self-adaptive W-S-C coatings:nanoscale friction and wearcitations
- 2015Friction force microscopy analysis of self-adaptive W-S-C coatingscitations
- 2014Nanomechanical assessment of human and murine collagen fibrils via atomic force microscopy cantilever-based nanoindentationcitations
- 2014WS2 nanoparticles - potential replacement for ZDDP and friction modifier additivescitations
- 2014Frictional properties of self-adaptive chromium doped tungsten-sulfur-carbon coatings at nanoscalecitations
- 2009Angle resolved XPS characterization of cationic polyacrylamidescitations
- 2006Defect formation and transport in La0.95Ni0.5Ti0.5O3-δcitations
- 2005Interfacial effects on the electrical properties of multiferroic BiFeO3/Pt/Si thin film heterostructurescitations
- 2005Tailoring of the PS surface with low energy ionscitations
- 2004Structural and chemical surface modification of polymers by low-energy ions and influence on nucleation, growth and adhesion of noble metals
- 2003Etching rate and structural modification of polymer films during low energy ion irradiationcitations
- 2003Mechanisms of argon ion-beam surface modification of polystyrenecitations
Places of action
Organizations | Location | People |
---|
article
Nanomechanical assessment of human and murine collagen fibrils via atomic force microscopy cantilever-based nanoindentation
Abstract
The nanomechanical assessment of collagen fibrils via atomic force microscopy (AFM) is of increasing interest within the biomedical research community. In contrast to conventional nanoindentation there exists no common standard for conducting experiments and analysis of data. Currently used analysis approaches vary between studies and validation of quantitative results is usually not performed, which makes comparison of data from different studies difficult. Also there are no recommendations with regards to the maximum indentation depth that should not be exceeded to avoid substrate effects. Here we present a methodology and analysis approach for AFM cantilever-based nanoindentation experiments that allows efficient use of captured data and relying on a reference sample for determination of tip shape. Further we show experimental evidence that maximum indentation depth on collagen fibrils should be lower than 10-15% of the height of the fibril to avoid substrate effects and we show comparisons between our and other approaches used in previous works. While our analysis approach yields similar values for indentation modulus compared to the Oliver-Pharr method we found that Hertzian analysis yielded significantly lower values. Applying our approach we successfully and efficiently indented collagen fibrils from human bronchi, which were about 30. nm in size, considerably smaller compared to collagen fibrils obtained from murine tail-tendon. In addition, derived mechanical parameters of collagen fibrils are in agreement with data previously published. To establish a quantitative validation we compared indentation results from conventional and AFM cantilever-based nanoindentation on polymeric samples with known mechanical properties. Importantly we can show that our approach yields similar results when compared to conventional nanoindentation on polymer samples. Introducing an approach that is reliable, efficient and taking into account the AFM tip shape, we anticipate that the present work may act as a guideline for conducting AFM cantilever-based nanoindentation of collagen fibrils. This may aid understanding of collagen-related diseases such as asthma, lung fibrosis or bone disease with potential alterations of collagen fibril mechanics. ?? 2014.