People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ayoub, Georges
Processes and Engineering in Mechanics and Materials
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2023Benchmarking the Tensile Properties of Polylactic Acid (PLA) Recycled Through Fused Granule Fabrication Additive Manufacturing
- 2023System Identification of Fused Filament Fabrication Additive Manufacturing Extrusion and Spreading Dynamics
- 2020Modeling the visco-hyperelastic–viscoplastic behavior of photodegraded semi-crystalline low-density polyethylene filmscitations
- 2020Effect of UV-aging on the mechanical and fracture behavior of low density polyethylenecitations
- 2018Effect of UV Ageing on the fatigue life of bulk polyethylenecitations
- 2018Effect of UV Ageing on the fatigue life of bulk polyethylenecitations
- 2016Microstructural observations and tensile fracture behavior of FSW twin roll cast AZ31 Mg sheetscitations
- 2016Mechanical, microstructural and fracture properties of dissimilar welds produced by friction stir welding of AZ31B and Al6061citations
- 2015Observations of the mechanical response and evolution of damage of AA 6061-T6 under different strain rates and temperaturescitations
- 2014A two-phase hyperelastic-viscoplastic constitutive model for semi-crystalline polymers: Application to polyethylene materials with a variable range of crystal fractionscitations
- 2012Fatigue life prediction of rubber-like materials under multiaxial loading using a continuum damage mechanics approach: Effects of two-blocks loading and R ratiocitations
- 2011Effects of crystal content on the mechanical behaviour of polyethylene under finite strains: Experiments and constitutive modellingcitations
- 2011A continuum damage model for the high-cycle fatigue life prediction of styrene-butadiene rubber under multiaxial loadingcitations
- 2010Modelling large deformation behaviour under loading–unloading of semicrystalline polymers: Application to a high density polyethylenecitations
- 2008Experimental study of chemo-mechanical response of amorphous poly(lactic acid) films exposed to UV irradiation
Places of action
Organizations | Location | People |
---|
article
A two-phase hyperelastic-viscoplastic constitutive model for semi-crystalline polymers: Application to polyethylene materials with a variable range of crystal fractions
Abstract
Polyethylene-based polymers as biomedical materials can contribute to a wide range of biomechanical applications. Therefore, it is important to identify, analyse, and predict with precision their mechanical behaviour. Polyethylene materials are semi-crystalline systems consisting of both amorphous and crystalline phases interacting in a rather complex manner. When the amorphous phase is in the rubbery state, the mechanical behaviour is strongly dependent on the crystal fraction, therefore leading to essentially thermoplastic or elastomeric responses. In this study, the finite deformation stress-strain response of polyethylene materials is modelled by considering these semi-crystalline polymers as two-phase heterogeneous media in order to provide insight into the role of crystalline and amorphous phases on the macro-behaviour and on the material deformation resistances, i.e. intermolecular and network resistances. A hyperelastic-viscoplastic model is developed in contemplation of representing the overall mechanical response of polyethylene materials under large deformation. An evolutionary optimization procedure based on a genetic algorithm is developed to identify the model parameters at different strain rates. The identification results show good agreement with experimental data, demonstrating the usefulness of the proposed approach: the constitutive model, with only one set of identified parameters, allows reproducing the stress-strain behaviour of polyethylene materials exhibiting a wide range of crystallinities, the crystal content becoming the only variable of the model.