People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wagner, Hanoch Daniel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024From Basic Principles of Protein-Polysaccharide Association to the Rational Design of Thermally Sensitive Materialscitations
- 2022Fragmentation of beaded fibres in a composite
- 2016Graphene oxide-Laponite hybrid from highly stable aqueous dispersioncitations
- 2013Osteonal lamellae elementary unitscitations
- 2012Nanoindentation of osteonal bone lamellaecitations
- 2010A novel experimental method for the local mechanical testing of human coronal dentincitations
- 2009Compressive response of dentin micro-pillarscitations
- 2007Microscopic investigation of shear in multiwalled nanotube deformationcitations
- 2001Nanoscale shear and indentation measurements in transcrystalline α-isotactic polypropylenecitations
- 2001Mechanics and dynamics of transcrystalline alpha-isotactic polypropylene at the nanoscale
Places of action
Organizations | Location | People |
---|
article
Nanoindentation of osteonal bone lamellae
Abstract
<p>Variations in Young's modulus of individual lamellae around a single bone osteon have been measured in three orthogonal planes by nanoindentation. The objective of these measurements was to establish a correlation between the mechanical properties and the microstructure of the osteonal lamellae. When indentation was performed in a plane perpendicular to the osteon axis (OA), the modulus of the lamella closest to the canal appears to be higher than the modulus of all other lamellae. No such difference was observed in planes parallel to the OA. However, in the parallel planes, an unexpected asymmetry in modulus was detected on opposing sides of the canal, potentially supporting the validity of the rotated plywood structure model of bone lamellae. Finally, based on the experimentally measured Young's modulus values, most osteonal lamellae appear to exhibit structural anisotropy.</p>