People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nogués, C.
Universitat Autònoma de Barcelona
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2023Accelerated biodegradation of FeMn porous alloy coated with ZnOcitations
- 2023Surface Modified β-Ti-18Mo-6Nb-5Ta (wt%) Alloy for Bone Implant Applications:citations
- 2023Hierarchical Surface Pattern on Ni‐Free Ti‐Based Bulk Metallic Glass to Control Cell Interactionscitations
- 2022Biodegradable porous FeMn(-xAg) alloys:citations
- 2018Cytocompatibility assessment of Ti-Zr-Pd-Si-(Nb) alloys with low Young's modulus, increased hardness, and enhanced osteoblast differentiation for biomedical applications
- 2017Study of Galfenol direct cytotoxicity and remote microactuation in cellscitations
- 2017Mechanical properties, corrosion performance and cell viability studies on newly developed porous Fe-Mn-Si-Pd alloyscitations
- 2016Effect of surface modifications of Ti40Zr10Cu38Pd12 bulk metallic glass and Ti-6Al-4V alloy on human osteoblasts in vitro biocompatibilitycitations
- 2016Novel Fe-Mn-Si-Pd alloys: Insights into mechanical, magnetic, corrosion resistance and biocompatibility performancescitations
- 2015Nanostructured Ti-Zr-Pd-Si-(Nb) bulk metallic composites: Novel biocompatible materials with superior mechanical strength and elastic recoverycitations
- 2015Controlling colloidal stability of silica nanoparticles during bioconjugation reactions with proteins and improving their longer-term stability, handling and storagecitations
- 2014In vitro biocompatibility assessment of Ti40Cu38Zr10Pd12 bulk metallic glasscitations
- 2014Optimized immobilization of lectins using self-assembled monolayers on polysilicon encoded materials for cell taggingcitations
- 2013On the biodegradability, mechanical behavior, and cytocompatibility of amorphous Mg72Zn23Ca5 and crystalline Mg70Zn23Ca5Pd2 alloys as temporary implant materialscitations
- 2013Novel Ti-Zr-Hf-Fe nanostructured alloy for biomedical applicationscitations
- 2012Efficient biofunctionalization of polysilicon barcodes for adhesion to the zona pellucida of mouse embryoscitations
- 2012Improved mechanical performance and delayed corrosion phenomena in biodegradable Mg-Zn-Ca alloys through Pd-alloyingcitations
Places of action
Organizations | Location | People |
---|
article
Improved mechanical performance and delayed corrosion phenomena in biodegradable Mg-Zn-Ca alloys through Pd-alloying
Abstract
The influence of partial substitution of Mg by Pd on the microstructure, mechanical properties and corrosion behaviour of Mg 72-xZn 23Ca 5Pd x(x=0, 2 and 6 at.%) alloys, synthesized by copper mould casting, is investigated. While the Mg 72Zn 23Ca 5 alloy is mainly amorphous, the addition of Pd decreases the glass-forming ability, thus favouring the formation of crystalline phases. From a mechanical viewpoint, the hardness increases with the addition of Pd, from 2.71GPa for x=0 to 3.9GPa for x=6, mainly due to the formation of high-strength phases. In turn, the wear resistance is maximized for an intermediate Pd content (i.e., Mg 70Zn 23Ca 5Pd 2). Corrosion tests in a simulated body fluid (Hank's solution) indicate that Pd causes a shift in the corrosion potential towards more positive values, thus delaying the biodegradability of this alloy. Moreover, since the cytotoxic studies with mouse preosteoblasts do not show dead cells after culturing for 27h, these alloys are potential candidates to be used as biomaterials. © 2011 Elsevier Ltd.