Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Adam, Clayton

  • Google
  • 13
  • 15
  • 31

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (13/13 displayed)

  • 2020The effect of vertebral body stapling on spine biomechanics and structure using a bovine model3citations
  • 2014Gravity-induced coronal plane joint moments in the adolescent scoliotic spinecitations
  • 2014Segmental torso masses in adolescent idiopathic scoliosis8citations
  • 2014The effect of repeated loading and freeze - thaw cycling on immature bovine thoracic motion segment stiffness8citations
  • 2014The effect of intervertebral staple insertion on bovine spine segment stiffnesscitations
  • 2014Intervertebral staple grading system with micro-CTcitations
  • 2013Segmental torso masses and gravity-induced coronal plane joint moments in adolescent idiopathic scoliosiscitations
  • 2013The effect of testing protocol on immature bovine thoracic spine segment stiffnesscitations
  • 2013Segmental torso masses and coronal plane joint torques in the adolescent scoliotic spinecitations
  • 2010Fusionless scoliosis correction using shape memory alloy staplescitations
  • 2009Development of a biaxial compression device for biological samples: preliminary experimental results for a closed cell foam4citations
  • 2006Development of a method to validate computer models of the spine for scoliosis correction surgery simulationcitations
  • 2002Finite element analysis of high strain rate superplastic forming (SPF) of Al–Ti alloys8citations

Places of action

Chart of shared publication
Labrom, Robert D.
5 / 6 shared
Askin, Geoffrey
9 / 10 shared
Sunni, Nabeel
5 / 5 shared
Askin, Geoffrey N.
1 / 1 shared
Pettet, Graeme J.
1 / 1 shared
Keenan, Bethany E.
1 / 2 shared
Pettet, Graeme
3 / 3 shared
Labrom, Robert
5 / 5 shared
Keenan, Bethany
3 / 5 shared
Verzin, Eugene J.
1 / 1 shared
Evans, John
1 / 2 shared
Tevelen, Greg
1 / 1 shared
Cunningham, Helen
1 / 1 shared
Yarlagadda, Prasad Kdv
1 / 50 shared
Gudimetla, Prasad V.
1 / 1 shared
Chart of publication period
2020
2014
2013
2010
2009
2006
2002

Co-Authors (by relevance)

  • Labrom, Robert D.
  • Askin, Geoffrey
  • Sunni, Nabeel
  • Askin, Geoffrey N.
  • Pettet, Graeme J.
  • Keenan, Bethany E.
  • Pettet, Graeme
  • Labrom, Robert
  • Keenan, Bethany
  • Verzin, Eugene J.
  • Evans, John
  • Tevelen, Greg
  • Cunningham, Helen
  • Yarlagadda, Prasad Kdv
  • Gudimetla, Prasad V.
OrganizationsLocationPeople

article

Development of a biaxial compression device for biological samples: preliminary experimental results for a closed cell foam

  • Adam, Clayton
  • Evans, John
  • Tevelen, Greg
Abstract

Biological tissues are subjected to complex loading states in vivo and in order to define constitutive equations that effectively simulate their mechanical behaviour under these loads, it is necessary to obtain data on the tissue's response to multiaxial loading. Single axis and shear testing of biological tissues is often carried out, but biaxial testing is less common. We sought to design and commission a biaxial compression testing device, capable of obtaining repeatable data for biological samples. The apparatus comprised a sealed stainless steel pressure vessel specifically designed such that a state of hydrostatic compression could be created on the test specimen while simultaneously unloading the sample along one axis with an equilibrating tensile pressure. Thus a state of equibiaxial compression was created perpendicular to the long axis of a rectangular sample. For the purpose of calibration and commissioning of the vessel, rectangular samples of closed cell ethylene vinyl acetate (EVA) foam were tested. Each sample was subjected to repeated loading, and nine separate biaxial experiments were carried out to a maximum pressure of 204 kPa (30 psi), with a relaxation time of two hours between them. Calibration testing demonstrated the force applied to the samples had a maximum error of 0.026 N (0.423% of maximum applied force). Under repeated loading, the foam sample demonstrated lower stiffness during the first load cycle. Following this cycle, an increased stiffness, repeatable response was observed with successive loading. While the experimental protocol was developed for EVA foam, preliminary results on this material suggest that this device may be capable of providing test data for biological tissue samples. The load response of the foam was characteristic of closed cell foams, with consolidation during the early loading cycles, then a repeatable load-displacement response upon repeated loading. The repeatability of the test results demonstrated the ability of the test device to provide reproducible test data and the low experimental error in the force demonstrated the reliability of the test data.

Topics
  • impedance spectroscopy
  • stainless steel
  • experiment
  • laser emission spectroscopy