Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tabor, Jim

  • Google
  • 1
  • 3
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Measurement of ferrite content of stainless steel sheet welds using a new Ferrite Density Number scale13citations

Places of action

Chart of shared publication
Kshirsagar, Rohit
1 / 3 shared
Lawrence, Jonathan
1 / 92 shared
Jones, Steve
1 / 6 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Kshirsagar, Rohit
  • Lawrence, Jonathan
  • Jones, Steve
OrganizationsLocationPeople

article

Measurement of ferrite content of stainless steel sheet welds using a new Ferrite Density Number scale

  • Kshirsagar, Rohit
  • Lawrence, Jonathan
  • Jones, Steve
  • Tabor, Jim
Abstract

The retained δ-ferrite content in austenitic stainless steel welds is a crucial parameter to control, since several properties of the weld depend on this. It is conventionally measured using a Ferrite Number (FN) scale, which has been defined in the internationally accepted standards such as ISO 8249 and AWS A4.2 M. A FeritScope® is commonly used to measure the FN of the welds, which takes advantage of the fact that the retained δ-ferrite phase at room temperature is magnetic whereas austenite is not. The readings obtained from the FeritScope® are known to be influenced by several constraints such as the sheet thickness, weld clad thickness, curvature of the surface, etc. Some correction factors have been introduced by the FeritScope® manufacturer to account for these influential conditions. However, when the corrected FNs of the welds made on thin 304 L stainless steel sheets (≤ 2.4 mm thick) were plotted against the cooling rates, the trends obtained contradicted those available in the literature. The FN was found to increase with an increase in the cooling rate, whereas it was expected to decrease. Moreover, addition of nitrogen as an alloying element, which is known to be a strong austenite promoting element, was not found to influence the measured FN of the welds, again contradicting the literature. On further investigation it was found that some additional geometrical features, apart from those mentioned in the FeritScope® user manual must be considered while measuring the FN. This lead to the definition of a new scale – Ferrite Density Number (FDN) – which was found to be a better indicator of the amount of retained δ-ferrite in the welds as against the conventionally used FN scale. Using the FDN scale could eliminate the contradictions to the literature and explain the strong austenite-promoting behaviour of nitrogen.

Topics
  • density
  • impedance spectroscopy
  • surface
  • stainless steel
  • phase
  • Nitrogen