People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sun, Yongle
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2022Assessing and mitigating the distortion and stress during electron beam welding of a large shell-flange structurecitations
- 2020Impact of weld restraint on the development of distortion and stress during the electron beam welding of a low-alloy steel subject to solid state phase transformation
- 2020Effects of dilution on the hardness and residual stresses in multipass steel weldmentscitations
- 2019Characterisation and modelling of tempering during multi-pass weldingcitations
- 2019Phase-Field Simulation of Grain Boundary Evolution In Microstructures Containing Second-Phase Particles with Heterogeneous Thermal Propertiescitations
- 2019Measurement and Prediction of Phase Transformation Kinetics in a Nuclear Steel During Rapid Thermal Cyclescitations
- 2019Measurement and Prediction of Phase Transformation Kinetics in a Nuclear Steel During Rapid Thermal Cyclescitations
- 2019Effects of dilution on alloy content and microstructure in multi-pass steel weldscitations
- 2018Prediction of grain boundary evolution in an titanium alloy substrate using a novel phase field model coupled with a semi-analytical thermal solution
- 2016Predicting an optimal inter-pass temperature to mitigate residual stress and distortion in ferritic steel weldmentscitations
- 2016The variation in elastic modulus throughout the compression of foam materialscitations
Places of action
Organizations | Location | People |
---|
article
Characterisation and modelling of tempering during multi-pass welding
Abstract
Weld-induced in-process tempering of martensite/bainite was studied through characterisation and modelling. Three-pass gas tungsten arc (GTA) and submerged arc (SA) welds were produced in grooved plates made from a low-alloy ferritic (SA508) steel. A thermal-metallurgical-mechanical model was developed to simulate multi-pass welding while accounting for tempering kinetics. Significant tempering of martensite, in the heat affected zone that was produced by the first pass, occurred during the second and third passes, resulting in a coarsened lath structure, increased carbide precipitation and reduced hardness. The tempering effect was more extensive in the SA weldments than in the GTA weldments, since the tempering mainly occurred in a martensite-dominant region without re-austenitisation for the former while in a partially re-austenitised region for the latter. The predictions for tempered microstructures were consistent with microscopic observations, and the predicted micro-hardness agreed well with measurements when tempering was considered in modelling. The peaks in predicted tensile and compressive residual stresses were reduced by considering tempering effect, since the local yield strength reduced as a consequence of the tempering, thereby limiting the stresses that could be sustained.