People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Reis, Ana
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2023Low- and High-Pressure Casting Aluminum Alloys: A Reviewcitations
- 2023Upcycling Aluminium Chips to Powder Feedstocks for Powder Metallurgy Applicationscitations
- 2023Additively Manufactured High-Strength Aluminum Alloys: A Reviewcitations
- 2022Damage Evolution Simulations via a Coupled Crystal Plasticity and Cohesive Zone Model for Additively Manufactured Austenitic SS 316L DED Componentscitations
- 2022Tensile Properties of As-Built 18Ni300 Maraging Steel Produced by DEDcitations
- 2022Numerical predictions of orthogonal cutting–induced residual stress of super alloy Inconel 718 considering dynamic recrystallizationcitations
- 2022An Adaptive Thermal Finite Element Simulation of Direct Energy Deposition With Reinforcement Learning: A Conceptual Frameworkcitations
- 2021Fracture Prediction Based on Evaluation of Initial Porosity Induced By Direct Energy Depositioncitations
- 2021Comparison of the machinability of the 316L and 18Ni300 additively manufactured steels based on turning testscitations
- 2021Numerical-experimental plastic-damage characterisation of additively manufactured 18ni300 maraging steel by means of multiaxial double-notched specimenscitations
- 2021Optimization of Direct Laser Deposition of a Martensitic Steel Powder (Metco 42C) on 42CrMo4 Steelcitations
- 2021An innovation in finite element simulation via crystal plasticity assessment of grain morphology effect on sheet metal formabilitycitations
- 2021Inconel 625/AISI 413 Stainless Steel Functionally Graded Material Produced by Direct Laser Depositioncitations
- 2021Deposition of Nickel-Based Superalloy Claddings on Low Alloy Structural Steel by Direct Laser Depositioncitations
- 2018Characterizing fracture forming limit and shear fracture forming limit for sheet metalscitations
Places of action
Organizations | Location | People |
---|
article
Characterizing fracture forming limit and shear fracture forming limit for sheet metals
Abstract
<p>This article investigates, experimentally, the failure loci in transition region between failure by crack-opening by mode I and by mode II of fracture mechanics. This investigation determines the fracture forming limit (FFL) and the shear fracture forming limit (SFFL) for copper with 0.8 mm and brass with 1 mm of thickness, by means of conventional sheet metal tests. Special focus is given to the use of staggered C-slit shear tests in order to obtain fracture strain pairs in the transition zone between FFL and SFFL, and the obtained results are presented. The procedure makes use of circle-grid analysis, thickness measurements and digital image correlation system (DIC). The fracture loci for the copper sheet were validated by simple and complex geometries deformed by single point incremental forming (SPIF). These different geometries allowed to obtain different strain paths (plane strain, shear and bi-axial deformation) with and without fracture, and revealed a good agreement between the results.</p>