People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Yakushina, Evgenia
Laboratory of Microstructure Studies and Mechanics of Materials
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2023Deep learning enhanced Watershed for microstructural analysis using a boundary class semantic segmentationcitations
- 2023Development of the forming limit diagram for AA6016-T4 at room temperature using uniaxial tension of notched samples and a biaxial testcitations
- 2022Tailoring titanium sheet metal using laser metal deposition to improve room temperature single-point incremental formingcitations
- 2021Effect of machining induced microstructure changes on the edge formability of titanium alloys at room temperature
- 2021Influence of longitudinal scratch defects on the bendability of titanium alloycitations
- 2020Influence of sheet conditions on in-plane strain evolution via ex-situ tensile deformation of Ti-3Al-2.5V at room temperaturecitations
- 2020Examining failure behaviour of commercially pure titanium during tensile deformation and hole expansion testcitations
- 2020Impact of machining induced surface defects on the edge formability of commercially pure titanium sheet at room temperaturecitations
- 2019Effect of edge conditions on the formability of commercially pure titanium sheet (Grade 2) at room temperature
- 2018The influence of the microstructure morphology of two phase Ti-6Al-4V alloy on the mechanical properties of diffusion bonded jointscitations
- 2017Automated microstructural analysis of titanium alloys using digital image processingcitations
- 2017An evaluation of H13 tool steel deformation in hot forging conditioncitations
- 2014Mechanical Properties and Microstructure of AZ31B Magnesium Alloy Processed by I-ECAPcitations
- 2014Modelling of active transformation of microstructure of two-phase Ti alloys during hot workingcitations
- 2013Mechanical properties and microstructure of AZ31B magnesium alloy processed by I-ECAP.citations
- 2010Corrosion behavior of titanium materials with an ultrafine-grained structurecitations
- 2009Nanostructuring of Ti-alloys by SPD processing to achieve superior fatigue propertiescitations
- 2008Effect of cold rolling on the structure and mechanical properties of sheets from commercial titaniumcitations
Places of action
Organizations | Location | People |
---|
article
An evaluation of H13 tool steel deformation in hot forging condition
Abstract
Plastic deformation is one of the causes of failure of hot forging tools, where the tool deforms to such an extent that parts formed are no longer within dimensional tolerance. Therefore, deformation of H13 tool steel that leads to transformation of the microstructure after forging Inconel 718 at high temperature and load was investigated. For this investigation nonlinear continuum mechanics 3D FE simulation Deform software, Scanning Electron Microscope (SEM), Electron Backscatter Diffraction (EBSD) and Microhardness tests were used. The result of 3D Deform simulation shows high localised stress and high strain of 0.38 on the sharp edge of the tool. This is one of the main reasons behind tool failure as accumulation of strain during deformation at high temperature causes changes in microstructure. SEM results confirm the severe deformation and highlight three different zones of deformation, recrystallization, martensitic and transition between each zone within the microstructure. EBSD results show low angle boundaries of 1~15° which represents mainly the deformation zone and it is associated with different dislocation substructures caused by slip. Furthermore, misorientation angles 28-32° corresponds to special boundaries ∑39a which are believed were created during martensitic lattice transformation when some of the boundaries are not perfectly match the rest. These special boundaries transform to low angle boundaries. The high angle boundaries 58-60° corresponds to twin boundaries and their parent matrix.