People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mehta, Kush P.
University of Strathclyde
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (33/33 displayed)
- 2024A novel approach for zero material loss (zero flash) and uniform cross-section during friction stir welding of dissimilar thickness Cu and Al alloys
- 2023Novel manufacturing of multi-material component by hybrid friction stir channelingcitations
- 2022Dissimilar friction stir welding of Al to non-Al metallic materials : An overviewcitations
- 2022Influence of copper plate positioning, zero tool offset, and bed conditions in friction stir welding of dissimilar Al-Cu alloys with different thicknessescitations
- 2022A review on friction stir-based channelingcitations
- 2022Microstructure evolution and mechanical properties of continuous drive friction welded dissimilar copper-stainless steel pipe jointscitations
- 2021Investigation of exit-hole repairing on dissimilar aluminum-copper friction stir welded jointscitations
- 2021Friction spot extrusion welding on dissimilar materials AA2024-T3 to AA5754-Ocitations
- 2021Corrigendum to ‟Effect of materials positioning on dissimilar modified friction stir clinching between aluminum 5754-O and 2024-T3 sheets” [Vacuum 178 (2020) 109445] (Vacuum (2020) 178, (S0042207X20302827), (10.1016/j.vacuum.2020.109445))
- 2021An overview on laser welding of metal foamscitations
- 2021Friction welding of dissimilar joints copper-stainless steel pipe consist of 0.06 wall thickness to pipe diameter ratiocitations
- 2021Applicability of Bobbin Tool Friction Stir Welding for Dissimilar Al-Mg Jointcitations
- 2021Fabrication and applications of fullerene-based metal nanocompositescitations
- 2021Processing and evaluation of dissimilar Al-SS friction welding of pipe configurationcitations
- 2021Investigation on stability of weld morphology, microstructure of processed zones, and weld quality assessment for hot wire gas tungsten arc welding of electrolytic tough pitch coppercitations
- 2021Magnetic pulse welding
- 2020Effect of shoulder features during friction spot extrusion welding of 2024-T3 to 6061-T6 aluminium alloyscitations
- 2020Effect of materials positioning on dissimilar modified friction stir clinching between aluminum 5754-O and 2024-T3 sheetscitations
- 2020Processing of copper by keyhole gas tungsten arc welding for uniformity of weld bead geometrycitations
- 2020Ultra-thin friction stir welding on Aluminum alloycitations
- 2019Introduction
- 2019Machining of shape memory alloys
- 2019A review on friction-based joining of dissimilar aluminum-steel jointscitations
- 2019Welding and joining of shape memory alloys
- 2019Processing of Shape Memory Alloys
- 2019Conventional and cooling assisted friction stir welding of AA6061 and AZ31B alloyscitations
- 2019Numerical modelling on cooling assisted friction stir welding of dissimilar Al-Cu jointcitations
- 2018Hybridization of filler wire in multi-pass gas metal arc welding of SA516 Gr70 carbon steelcitations
- 2018An outlook on comparison of hybrid welds of different root pass and filler pass of FCAW and GMAW with classical welds of similar root pass and filler passcitations
- 2017Hybrid approaches of assisted heating and cooling for friction stir welding of copper to aluminum jointscitations
- 2017Influence of tool pin design on properties of dissimilar copper to aluminum friction stir weldingcitations
- 2016Effects of tilt angle on the properties of dissimilar friction stir welding copper to aluminumcitations
- 2016A review on dissimilar friction stir welding of copper to aluminumcitations
Places of action
Organizations | Location | People |
---|
article
Hybrid approaches of assisted heating and cooling for friction stir welding of copper to aluminum joints
Abstract
<p>Heating assisted-friction stir welding (FSW) was carried out at different preheating currents of 40, 80 and 120 amps by applying tungsten inert gas torch ahead of stirring tool while, compressed air and water were brought into the effect behind the stirring tool in case of cooling enhanced FSW. The welded specimens were subsequently assessed by macro-graphs, optical microscopy, tensile and hardness analysis, scanning electron microscopy and X-ray diffraction characterization. Minor improvement in tensile strength of weld was reported by heating assisted FSW at low preheating current of 40 amp. Tensile strength of weld was deteriorated as preheating current increased to 80 and 120 amps. Significantly improved tensile strength was reported for weld of cooling enhanced FSW by water. Normal FSW and hybrid FSW were contained intermetallic compounds such as CuAl<sub>2</sub> and Cu<sub>9</sub>Al<sub>4</sub>. The amount of intermetallic compounds formed in stir zone was increased as preheating current increased. The formation of intermetallic compounds was drastically reduced as cooling effect increased from compressed air to water. Higher hardness of stir zone was reported for both hybrid FSW techniques relative to normal FSW.</p>