People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Geijselaers, Hubert
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (31/31 displayed)
- 2023Computing Sheet Rolling Instabilities with a Shell Finite Element Model
- 2022Discontinuous Galerkin FEM with Hot Element Addition for the Thermal Simulation of Additive Manufacturing
- 2021Efficient thermal simulation of large-scale metal additive manufacturing using hot element additioncitations
- 2021Efficient analysis of dense fiber reinforcement using a reduced embedded formulationcitations
- 2020Optimization of the Interacting StiffenedSkins and Ribs Made of Composite Materialscitations
- 2020A New in-Plane Bending Test to Determine Flow Curves for Materials with Low Uniform Elongationcitations
- 2019Experimental investigation of pinching phenomena in cold rolling of thin steel sheetscitations
- 20191D squeeze flow analysis of chopped long fibre thermoplastic composite
- 2018A level-set-based strategy for thickness optimization of blended composite structurescitations
- 2018Deformation mechanism in compression molding of discontinuous thermoplastic composites
- 2017Effect of flake distribution in mold on the flow during compression molding of unidirectional long fiber thermoplastic flakes
- 2016Interpolation of final geometry and result fields in process parameter spacecitations
- 2016The softened heat-affected zone in resistance spot welded tailor hardened boron steel: a material model for crash simulation
- 2016Plasticity and fracture modeling of the heat-affected zone in resistance spot welded tailor hardened boron steelcitations
- 2016Parameter Study for Friction Surface Cladding of AA1050 on AA2024-T351
- 2015Friction Surface Cladding of AA1050 on AA2024-T351; influence of clad layer thickness and tool rotation rate
- 2015Thermal and Flow Analysis of Friction Surface Cladding with Varying Clad Layer Thickness
- 2015Single scan vector prediction in selective laser meltingcitations
- 2015Cyclic shear behavior of austenitic stainless steel sheet
- 2015Large strain cyclic behavior of metastable austenic stainless steelcitations
- 2015Friction surface claddingcitations
- 2015Influence of ring growth rate on damage development in hot ring rollingcitations
- 2014Influence of feed rate on damage development in hot ring rollingcitations
- 2013Modeling of the Austenite-Martensite Transformation in Stainless and TRIP Steelscitations
- 2013Strain direction dependency of martensitic transformation in austenitic stainless steels: The effect of gamma-texturecitations
- 2013Cladding of Advanced Al Alloys Employing Friction Stir Weldingcitations
- 2013Multi-Stage FE Simulation of Hot Ring Rollingcitations
- 2012Free Surface Modeling of Contacting Solid Metal Flows Employing the ALE formulationcitations
- 2011Comparison of ALE finite element method and adaptive smoothed finite element method for the numerical simulation of friction stir welding
- 2007Numerical forming simulations and optimisation in advanced materials
- 2000Improvements in FE-analysis of real-life sheet metal forming
Places of action
Organizations | Location | People |
---|
article
Plasticity and fracture modeling of the heat-affected zone in resistance spot welded tailor hardened boron steel
Abstract
tFive hardness grades of 22MnB5 are considered, covering the full strength-range from 600 MPa in theferritic/pearlitic range to 1500 MPa in the fully hardened, martensitic state. These five grades form thebasis for a hardness-based material model for the heat-affected zone found around resistance spot weldsin tailor hardened boron steel. Microhardness measurements of resistance spot welds in all five gradesare used to determine the location and shape of the heat-affected zone and for mapping of the hardnessdistributions into FE-models of the specimens used for model calibration. For calibration of the strainhardening of the heat-affected zone, a specially designed asymmetric uni-axial tensile specimen is usedthat features a well-defined strain field up to fracture initiation. Both the measured force–displacementcurves and the strain fields are used as input for an inverse FEM optimization algorithm that identifiessuitable strain hardening model parameters by minimizing the differences between experimental andsimulated results. A strain-based fracture model is calibrated using a hybrid experimental/numericalapproach, featuring two additional specimens in which fracture initiates in the HAZ under differentstress states. Strain hardening and fracture strains are assumed to be linearly related to the as-weldedmaterial hardness. The calibration and modeling approach are validated by comparing measured andpredicted force–displacement curves and strain fields of welded coupon tensile tests.