People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Marques, Mj
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2022Comparative Study of the Wear Behavior of B4C Monolayered and CrN/CrCN/DLC Multilayered Physical Vapor Deposition Coatings Under High Contact Loads: An Experimental Analysiscitations
- 2022Quantification of Residual Stress Relief by Heat Treatments in Austenitic Cladded Layerscitations
- 2021Rolling and Rolling-Sliding Contact Fatigue Failure Mechanisms in 32 CrMoV 13 Nitrided Steel-An Experimental Studycitations
- 2020Comparison between EDM and grinding machining on fatigue behaviour of AISI D2 tool steelcitations
- 2017Texture characterization of stainless steel cladded layers of process vesselscitations
- 2015Effect of heat treatment on microstructure and residual stress fields of a weld multilayer austenitic steel cladcitations
- 2014Residual Stresses Profiles of Cladded Austenitic Stainless Steel Evaluated by X-Ray Diffraction and by Incremental Hole-Drilling Method
- 2013The Use of Neutron Diffraction for the Determination of the in-Depth Residual Stresses Profile in Weld Coatingscitations
- 2012Evaluation of stress-strain behavior of surface treated steels by X-ray diffractioncitations
- 2012Design and manufacture of a composite bus
- 2012RESIDUAL STRESSES PROFILES OF CLADDED AUSTENITIC STAINLESS STEEL BY INCREMENTAL HOLE DRILLING METHOD
- 2011Residual Stress Fields after Heat Treatment in Cladded Steel of Process Vesselscitations
- 2006Surface integrity of H13 ESR mould steel milled by carbide and CBN toolscitations
- 2005X-ray diffraction characterization of ion-implanted austenitic stainless steelcitations
- 2002Relaxation of residual stresses on the near surface of carbon steel substrates due to plasma cleaning
Places of action
Organizations | Location | People |
---|
article
Effect of heat treatment on microstructure and residual stress fields of a weld multilayer austenitic steel clad
Abstract
Samples of ferritic-perlitic steel were cladded by submerged arc welding with three layers of two austenitic stainless steel filler metals. After the weld cladding, samples were submitted to stress relief heat treatment (SRHT) under different parameters. The characterization of the microstructure of the samples was made by optical and scanning electron microscopy, and the residual stresses determined by X-ray diffraction and incremental hole drilling Method. The results were compared and related to the SRHT conditions. The microstructure of the third layer of the as-welded clad consists of cellular austenite and intercellular eutectic delta-ferrite particles, while the microstructure of the first layer presents a high proportion of lathy martensite in gamma-Fe cells. The second layer contains a low proportion of martensite and high proportion of austenite. The SRHTs induced partial decomposition of delta-ferrite in the superficial layer, increasing the rate of decomposition with the treatment temperature, and the coarsening of precipitates in the vicinity of the interface carbon steel-stainless steel. The superficial layer of the as-welded and machined clad plate presented residual compressive stresses. The SRHT at 540 degrees C, for 10 h of holding time, enabled some residual stress relaxation, unlike the treatment at 620 degrees C, during 1 h, which increased the compressive stresses.