People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sarhadi, Ali
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Bayesian optimization-based prediction of the thermal properties from fatigue test IR imaging of composite couponscitations
- 2024In-situ and adhesive repair of continuous fiber composites using 3D printingcitations
- 2024Coupled heat transfer–crystallization analysis in continuous carbon fiber-reinforced thermoplastic composites 3D printing: simulation and experimental validation
- 2024Microstructural Evolution During Welding of High Si Solution-Strengthened Ferritic Ductile Cast Iron Using Different Filler Metalscitations
- 2024An experimentally validated thermomechanical model for a parametric study on reducing residual stress in cast iron repair welding
- 2023Understanding the challenges during repair welding of EN GJS-500-14 spheroidal cast iron for wind industry
- 2023Thermomechanical modeling and experimental study of a multi-layer cast iron repair welding for weld-induced crack predictioncitations
- 2022Thermographic data analytics-based damage characterization in a large-scale composite structure under cyclic loadingcitations
- 2018Optimal design of galvanic corrosion protection systems for offshore wind turbine support structurescitations
- 2015Three-Dimensional Modeling of Glass Lens Moldingcitations
- 2015Optimization of the Mechanical and Electrical Performance of a Thermoelectric Modulecitations
- 2014Evaluation of the viscoelastic behaviour and glass/mould interface friction coefficient in the wafer based precision glass mouldingcitations
Places of action
Organizations | Location | People |
---|
article
Evaluation of the viscoelastic behaviour and glass/mould interface friction coefficient in the wafer based precision glass moulding
Abstract
Recent improvements in the manufacturing process of camera lenses have introduced the use of a newtechnology involving wafer based precision glass moulding. The utilization of this technology has someimportant advantages such as cost reduction, supply chain simplification and higher image quality. How-ever, the required accuracy for the final size and shape of the moulded lenses as well as the complexity ofthis technology call for a high level of process understanding and numerical simulation is a very importantpart of achieving this goal. The viscoelastic parameters of the optical glass as well as the glass/mould inter-face friction coefficient play a key role in deformation behaviour and stress distribution of the mouldedglass lens. Therefore, a proper evaluation of these parameters is the first important step in numericalmodelling of the precision glass moulding process.The current paper deals with characterization of the interfacial glass/mould friction coefficient andviscoelastic behaviour of the L-BAL42 glass material above the glass transition temperature. Several glassrings are pressed at three different temperatures to various thicknesses and the experimental force, dis-placements, internal diameter and thickness of the rings are measured during the tests. Viscoelastic andstructural relaxation behaviour of the glass are implemented into the ABAQUS FEM software through aFORTRAN material subroutine (UMAT) and the FE model is validated with a sandwich seal test. Then, byFE simulation of the ring compression test and comparison of the experimental creep with the simulatedone in an iterative procedure, viscoelastic parameters of the glass material are characterized. Finally,interfacial glass/mould friction coefficients at different temperatures are determined through FEM basedfriction curves combined with experimental data points. The obtained viscoelastic parameters and inter-facial friction coefficients can later be employed for prediction of the final shape/size as well as the stressdistribution in the glass wafer during a real wafer based precision glass moulding process. © 2014 Elsevier B.V. All rights reserved.