People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Stevens, Nicholas
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2021Corrosion Electrochemistry with a Segmented Array Bipolar Electrodecitations
- 2018Relationship Between the Inductive Response Observed During Electrochemical Impedance Measurements on Aluminium and Local Corrosion Processescitations
- 2017Finite Element Modelling to Investigate the Mechanisms of CRUD Deposition in PWRcitations
- 2012Laser surface modification using Inconel 617 machining swarf as coating materialcitations
- 2011Material-efficient laser cladding for corrosion resistance
- 2010Preliminary evaluation of digital image correlation for in-situ observation of low temperature atmospheric-induced chloride stress corrosion cracking in austenitic stainless steelscitations
- 2007Modelling intergranular stress corrosion cracking in simulated three-dimensional microstructurescitations
- 2006Grain Boundary Control for Improved Intergranular Stress Corrosion Cracking Resistance in Austenitic Stainless Steel: New Approachcitations
- 2006A three-dimensional computational model for intergranular crackingcitations
- 2006Three dimensional observations and modelling of intergranular stress corrosion cracking in austenitic stainless steelcitations
- 2006Grain boundary control for improved intergranular stress corrosion cracking resistance in austenitic stainless steels: new approach
- 2006Intergranular Stress Corrosion Crack Propagation in Sensitised Austenitic Stainless Steel (Microstructure Modelling and Experimental Observation)
- 2006Meso-mechanical model for intergranular stress corrosion cracking and implications for microstructure engineering
- 2006A two-dimensional mesoscale model for intergranular stress corrosion crack propagationcitations
- 2005The roles of microstructure and mechanics in intergranular stress corrosion cracking
- 2005Computational studies of intergranular stress corrosion crack propagation and the role of bridging ligaments
- 2005Microstructure engineering for improved intergranular stress corrosion cracking resistance of stainless steels
- 2005Microstructure engineering for improved intergranular stress corrosion cracking resistance of stainless steels
- 2005Three dimensional observations and modelling of intergranular stress corrosion cracking in austenitic stainless steel
Places of action
Organizations | Location | People |
---|
article
Laser surface modification using Inconel 617 machining swarf as coating material
Abstract
A single-stage, blown powder laser cladding process is used to deposit a protective layer of Ni-based alloy Inconel 617 on mild steel substrates. A Design of Experiments methodology is used to analyse the effects of the major laser cladding processing parameters on the deposited layer characteristics. Layer thickness, microstructure, dilution, elemental composition and corrosion resistance are analysed and correlated with the processing parameters and the overall effectiveness of the protective coating assessed. The work is different in that the protective material, usually in the form of costly powder, is in this case virtually cost-free and simply recycled from machining waste without any costly atomisation or similar process. The results show a number of significant relationships between the processing parameters and the effectiveness of the protective coating. The layer thickness and hardness were found to increase with the mass feed rate and decrease with an increase in laser power. A mainly columnar dendritic microstructure was observed in the clads. There was no evidence of significant bonding defects, trapped unmelted particles or porosity under most conditions. In all samples, the coatings displayed significant higher corrosion resistance than the mild steel sample. © 2012 Elsevier B.V. All rights reserved.