People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Harrison, David Keith
Glasgow Caledonian University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2022Comprehensive study on the influence of different pretreatment methods and structural adhesives on the shear strength of hybrid CFRP/aluminum jointscitations
- 2022Adhesively bonded CFRP/Al joints: influence of the surface pretreatment on corrosion during salt spray testcitations
- 2022Laser surface treatment of carbon fiber reinforced polymer using near-infrared laser wavelength with variated process parameterscitations
- 2022Individual process development of single and multi-material laser melting in novel modular laser powder bed fusion systemcitations
- 2021Laser polishing of Laser Powder Bed Fusion AlSi10Mg parts—influence of initial surface roughness on achievable surface qualitycitations
- 2021Prozessparameter-Abhängigkeiten im kontinuierlichen und gepulsten Laserbetriebsmodus beim Oberflächenpolieren von additiv gefertigten Aluminiumbauteilen (AlSi10Mg)citations
- 2020Laser-based surface treatment of CFRP and aluminum for adhesively bonded hybrid jointscitations
- 2017Material removal simulation for steel mould polishingcitations
- 2016Simulation of material removal in mould polishing for polymer optic replication
- 2013Precision mould manufacturing for polymer opticscitations
- 2007Part strength analysis of Shell Assisted Layer Manufacturing (SALM)
- 2006Process energy analysis for aluminium alloy and stainless steel in laser-assisted jet electrochemical machiningcitations
- 2005Enhancing the formability of aluminium components via temperature controlled hydroformingcitations
- 2004Modelling and experimental investigation of laser assisted jet electrochemical machiningcitations
Places of action
Organizations | Location | People |
---|
article
Enhancing the formability of aluminium components via temperature controlled hydroforming
Abstract
New requirements of the automotive industry, concerning lightweight and non-corroding construction, demand new production methods. Due to this the hydroforming process of aluminium alloys are of special interest. The disadvantage of aluminium alloys is the poorer formability compared to steel. A method to increase the formability of the aluminium alloys during the hydroforming process is the enhancement of the forming temperature. The following work starts with the description of the hydroforming process at room temperature. Afterwards a concept for the thermal hydroforming is developed and a forming tool for sheet metals is realised. With this tool, experiments are executed which investigate the formability, the wall-thickness distribution, the microstructure before and after the forming and the strain distribution of the aluminium alloys at enhanced temperatures. With this knowledge, a thermal hydroforming tube part will be developed and prototypes will be produced. Simultaneous to the practical experiments a Finite-Element Model will be developed and used for a parameter study as well as for the design of the thermal hydroforming part.