Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Harrison, David Keith

  • Google
  • 14
  • 33
  • 230

Glasgow Caledonian University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (14/14 displayed)

  • 2022Comprehensive study on the influence of different pretreatment methods and structural adhesives on the shear strength of hybrid CFRP/aluminum joints17citations
  • 2022Adhesively bonded CFRP/Al joints: influence of the surface pretreatment on corrosion during salt spray test7citations
  • 2022Laser surface treatment of carbon fiber reinforced polymer using near-infrared laser wavelength with variated process parameters4citations
  • 2022Individual process development of single and multi-material laser melting in novel modular laser powder bed fusion system6citations
  • 2021Laser polishing of Laser Powder Bed Fusion AlSi10Mg parts—influence of initial surface roughness on achievable surface quality20citations
  • 2021Prozessparameter-Abhängigkeiten im kontinuierlichen und gepulsten Laserbetriebsmodus beim Oberflächenpolieren von additiv gefertigten Aluminiumbauteilen (AlSi10Mg)23citations
  • 2020Laser-based surface treatment of CFRP and aluminum for adhesively bonded hybrid joints2citations
  • 2017Material removal simulation for steel mould polishing14citations
  • 2016Simulation of material removal in mould polishing for polymer optic replicationcitations
  • 2013Precision mould manufacturing for polymer optics8citations
  • 2007Part strength analysis of Shell Assisted Layer Manufacturing (SALM)citations
  • 2006Process energy analysis for aluminium alloy and stainless steel in laser-assisted jet electrochemical machining10citations
  • 2005Enhancing the formability of aluminium components via temperature controlled hydroforming41citations
  • 2004Modelling and experimental investigation of laser assisted jet electrochemical machining78citations

Places of action

Chart of shared publication
Riegel, Harald
6 / 11 shared
Knoblauch, Volker
4 / 9 shared
De Silva, Anjali K. M.
14 / 21 shared
Dostal, Isabell
2 / 4 shared
Meinhard, Dieter
4 / 7 shared
Schanz, Jochen
6 / 11 shared
Nester, Sara
2 / 5 shared
Pott, Timo
1 / 2 shared
Islam, Nabirul
1 / 1 shared
Schneider, Gerhard
1 / 7 shared
Kolb, David
1 / 1 shared
Goll, Dagmar
1 / 4 shared
Hofele, Markus
1 / 2 shared
Roth, Andre
1 / 1 shared
Hofele, M.
1 / 2 shared
Riegel, H.
1 / 2 shared
Roth, A.
1 / 5 shared
Schanz, J.
1 / 2 shared
Gooßen, Michael
1 / 1 shared
Rimkus, Wolfgang
2 / 6 shared
Almeida, Rui
2 / 5 shared
Borret, Rainer
1 / 2 shared
Börret, Rainer
1 / 1 shared
Speich, Marco
1 / 2 shared
Börret, R.
1 / 2 shared
Rimkus, W.
1 / 4 shared
Haritos, G.
1 / 1 shared
Keenan, P.
1 / 2 shared
Egodawatta, A. K.
1 / 2 shared
Mcgeough, J. A.
2 / 2 shared
Pajak, P. T.
2 / 2 shared
Bauer, Herbert
1 / 1 shared
Keigler, Michael
1 / 1 shared
Chart of publication period
2022
2021
2020
2017
2016
2013
2007
2006
2005
2004

Co-Authors (by relevance)

  • Riegel, Harald
  • Knoblauch, Volker
  • De Silva, Anjali K. M.
  • Dostal, Isabell
  • Meinhard, Dieter
  • Schanz, Jochen
  • Nester, Sara
  • Pott, Timo
  • Islam, Nabirul
  • Schneider, Gerhard
  • Kolb, David
  • Goll, Dagmar
  • Hofele, Markus
  • Roth, Andre
  • Hofele, M.
  • Riegel, H.
  • Roth, A.
  • Schanz, J.
  • Gooßen, Michael
  • Rimkus, Wolfgang
  • Almeida, Rui
  • Borret, Rainer
  • Börret, Rainer
  • Speich, Marco
  • Börret, R.
  • Rimkus, W.
  • Haritos, G.
  • Keenan, P.
  • Egodawatta, A. K.
  • Mcgeough, J. A.
  • Pajak, P. T.
  • Bauer, Herbert
  • Keigler, Michael
OrganizationsLocationPeople

article

Enhancing the formability of aluminium components via temperature controlled hydroforming

  • Harrison, David Keith
  • De Silva, Anjali K. M.
  • Bauer, Herbert
  • Keigler, Michael
Abstract

New requirements of the automotive industry, concerning lightweight and non-corroding construction, demand new production methods. Due to this the hydroforming process of aluminium alloys are of special interest. The disadvantage of aluminium alloys is the poorer formability compared to steel. A method to increase the formability of the aluminium alloys during the hydroforming process is the enhancement of the forming temperature. The following work starts with the description of the hydroforming process at room temperature. Afterwards a concept for the thermal hydroforming is developed and a forming tool for sheet metals is realised. With this tool, experiments are executed which investigate the formability, the wall-thickness distribution, the microstructure before and after the forming and the strain distribution of the aluminium alloys at enhanced temperatures. With this knowledge, a thermal hydroforming tube part will be developed and prototypes will be produced. Simultaneous to the practical experiments a Finite-Element Model will be developed and used for a parameter study as well as for the design of the thermal hydroforming part.

Topics
  • impedance spectroscopy
  • microstructure
  • experiment
  • aluminium
  • steel
  • aluminium alloy
  • composite
  • forming
  • ceramic