People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Roscow, James
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Porous Structure Enhances the Longitudinal Piezoelectric Coefficient and Electromechanical Coupling Coefficient of Lead-Free (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3citations
- 2024Porous structure enhances the longitudinal piezoelectric coefficient and electromechanical coupling coefficient of lead‐free (Ba 0.85 Ca 0.15 )(Zr 0.1 Ti 0.9 )O 3citations
- 2024Temperature-Dependent Ferroelectric Properties and Aging Behavior of Freeze-Cast Bismuth Ferrite-Barium Titanate Ceramicscitations
- 2024Ferroelectric-enhanced batteries for rapid charging and improved long-term performancecitations
- 2024Temperature-Dependent Ferroelectric Properties and Aging Behavior of Freeze-Cast Bismuth Ferrite–Barium Titanate Ceramicscitations
- 2024Exploring Lead-Free Materials for Screen-Printed Piezoelectric Wearable Devicescitations
- 2023The unusual case of plastic deformation and high dislocation densities with the cold sintering of the piezoelectric ceramic K0.5Na0.5NbO3citations
- 2022Twelve modified figures of merit of 2–2-type composites based on relaxor-ferroelectric single crystalscitations
- 2022Innovative piezo-active composites and their structure - Property relationshipscitations
- 2022Residual stress and domain switching in freeze cast porous barium titanatecitations
- 2022Ultrasonic Transducers made from Freeze-Cast Porous Piezoceramicscitations
- 2019Orienting anisometric pores in ferroelectrics:Piezoelectric property engineering through local electric field distributionscitations
- 2019Modified energy harvesting figures of merit for stress- and strain-driven piezoelectric systemscitations
- 2018Freeze cast porous barium titanate for enhanced piezoelectric energy harvestingcitations
- 2018Corrigendum to “Modelling and fabrication of porous sandwich layer barium titanate with improved piezoelectric energy harvesting figures of merit” [Acta Mater. 128 (2017) 207–217](S1359645417301209)(10.1016/j.actamat.2017.02.029)citations
- 2018Understanding the effect of porosity on the polarisation-field response of ferroelectric materialscitations
- 2017Modelling and fabrication of porous sandwich layer barium titanate with improved piezoelectric energy harvesting figures of meritcitations
- 2016Manufacture and characterization of porous ferroelectrics for piezoelectric energy harvesting applicationscitations
Places of action
Organizations | Location | People |
---|
article
Ferroelectric-enhanced batteries for rapid charging and improved long-term performance
Abstract
Ferroelectric materials with large spontaneous polarization and high permittivity are emerging as potential candidates to enhance the performance of lithium-ion, sodium-ion, and solid-state batteries. This review provides an overview of the application of ferroelectric materials to batteries, with an emphasis on the working mechanisms by which they can enhance charging, cycling capabilities and stability. Reported mechanisms of ferroelectric-enhanced battery performance include space charge layer modulation to increase ionic conductivity within electrolytes or reduce interfacial resistance between electrode and electrolyte, improved rate kinetics by promoting reactions within the anode or cathode, improved battery stability, and the mitigation of polysulfide shuttling effects in lithium-sulfur batteries. Improving ionic conductivity is a recurring theme that can facilitate homogeneous plating of lithium or sodium at the anode to reduce and avoid dendrite growth, thereby extending battery lifetime and cycling stability, whilst enhancing charge and discharge rates. Inorganic ferroelectric additives to porous separators and solid electrolytes can also provide secondary benefits in terms of mechanical properties to resist dendrite penetration and mitigate against battery failure. Improvements in characterization techniques are suggested to aid in separating the benefits that arise from ferroelectricity from those attributable to competing mechanisms. Future challenges and perspectives of ferroelectric-enhanced batteries are discussed.