People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Simmons, Mark
University of Birmingham
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Design of slurries for 3D printing of sodium-ion battery electrodescitations
- 2023Comparison between RANS and 3D-PTV measurements of Newtonian and non-Newtonian fluid flows in a stirred vessel in the transitional regimecitations
- 2023Thermomechanical Responses of Microcracks in a Honeycomb Particulate Filter
- 2022Rheology and structure of lithium‐ion battery electrode slurriescitations
- 2021Understanding the effects of processing conditions on the formation of lamellar gel networks using a rheological approachcitations
- 2021Lagrangian investigations of a stirred tank fluid flow using 3D-PTVcitations
- 2020Ironmaking and Steelmaking Slags As Sustainable Adsorbents For Industrial Effluents And Wastewater Treatmentcitations
- 2017Investigating the impact of operating conditions on the extent of additive mixing during thermoplastic polymer extrusioncitations
- 2016Agglomeration in counter-current spray drying towers. Part A: Particle growth and the effect of nozzle heightcitations
- 2016A comparison of methods for in-situ discrimination of imaged phase boundaries using Electrical Capacitance Tomography
- 2016The impact of process parameters on the purity and chemical properties of lignin extracted from miscanthus x giganteus using a modified organosolv method
- 2013An Assessment of the Influence of Gas Turbine Lubricant Thermal Oxidation Test Method Parameters Towards the Development of a New Engine Representative Laboratory Test Methodcitations
- 2013Kinetics of metals adsorption in acid mine drainage treatment with blast furnace slag
- 2009Influence of surfactant upon air entrainment hysteresis in curtain coatingcitations
- 2007Influence of vicosity and impingement speed on intense hydrodynamic assist in curtain coatingcitations
- 2006Hysteresis and non-uniqueness in the speed of onset of instability in curtain coatingcitations
- 2006Influence of the flow field in curtain coating onto a prewet substratecitations
Places of action
Organizations | Location | People |
---|
article
Design of slurries for 3D printing of sodium-ion battery electrodes
Abstract
<p>Additive manufacturing of battery electrodes, using syringe deposition 3D printing or direct ink writing methods, enables intricate microstructural design. This process differs from traditional blade or slot-die coating methods, necessitating tailored physical properties of composite slurries to ensure successful deposition. Inadequately optimised slurries result in non-uniform extrusion, and challenges such as nozzle swelling or slumping, result in compromised structural integrity of the print, limiting the resolution. This study focuses on developing slurry design principles by thoroughly characterising the rheology of several water-based hard carbon anode slurry, both in shear and extension. Hard carbon is chosen as a material of significant importance for future sodium-ion batteries, and an example for this optimisation. The slurry composition is tailored to introduce yield stress by incorporating network-forming binder (carrageenan) and additive (carbon nanotubes), effectively reducing spreading, and preserving the printed coating's structure. Validation is performed through printing a large width line and evaluating spread. The same slurry is deposited on a smaller 150 μm nozzle, which introduces die swell and spreading effects. This offers insights for further optimization strategies. The strategies developed in this research for characterizing and optimizing the rheology through formulation lay the groundwork for the advancement of detailed 3D printed electrodes, contributing to the progress of additive manufacturing technologies in the field of battery manufacturing.</p>