People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Loukas, Charalampos
University of Strathclyde
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2023Flexible and automated robotic multi-pass arc welding
- 2023In-process non-destructive evaluation of metal additive manufactured components at build using ultrasound and eddy-current approachescitations
- 2023In-process non-destructive evaluation of metal additive manufactured components at build using ultrasound and eddy-current approachescitations
- 2023Driving towards flexible and automated robotic multi-pass arc welding
- 2022Autonomous and targeted eddy current inspection from UT feature guided wave screening of resistance seam welds
- 2022Multi-sensor electromagnetic inspection feasibility for aerospace composites surface defects
- 2022Collaborative robotic wire + arc additive manufacture and sensor-enabled in-process ultrasonic non-destructive evaluationcitations
- 2022Automated multi-modal in-process non-destructive evaluation of wire + arc additive manufacturing
- 2022Targeted eddy current inspection based on ultrasonic feature guided wave screening of resistance seam welds
- 2022In-process non-destructive evaluation of wire + arc additive manufacture components using ultrasound high-temperature dry-coupled roller-probe
- 2022Collaborative robotic Wire + Arc Additive Manufacture and sensor-enabled in-process ultrasonic Non-Destructive Evaluationcitations
- 2022Automated real time eddy current array inspection of nuclear assetscitations
- 2021A cost-function driven adaptive welding framework for multi-pass robotic weldingcitations
Places of action
Organizations | Location | People |
---|
article
A cost-function driven adaptive welding framework for multi-pass robotic welding
Abstract
Manual teaching of robot paths and welding parameters for multi-pass robotic welding is a cumbersome and time-consuming task, which decreases the flexibility, adaptability, and potential of such systems. This paper introduces and presents a new automated weld parameter and pass deposition sequencing framework, which builds on the current state of the art developments and enables automatic planning of multi-pass welding for single-sided V-groove geometries. By integrating a novel cost-function concept that permutates and identifies the welding parameters for each layer through a user-driven weighting, the framework delivers the minimum number of passes, filler material and welding arc time based on application requirements. A mathematical model relating the cross-section area of beads with the pose of the torch and weaving width was built upon to allow full-process automated welding parameter generation and adaption for different geometric characteristics of the groove. The concept methodology and framework were then developed and verified experimentally, through robotically deployed Metal Active Gas (MAG) welding. For a given representative joint, the arc welding time and amount of filler wire were found to be 32.9 % and 26.18 % lower respectively, than the worst-case available welding parameter combination, delivering a corresponding decrease in direct automated welding manufacturing costs. Lastly, an ultrasonic inspection was undertaken to verify the consistent quality of the weldments validating the framework outcome and enabling welding pass automation through robotic systems.