People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Farrahi, G. H.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2021Applications of ultrasonic testing and machine learning methods to predict the static & fatigue behavior of spot-welded joints
- 2020Applications of ultrasonic testing and machine learning methods to predict the static & fatigue behavior of spot-welded jointscitations
- 2016Experimental measurement and analytical determination of shot peening residual stresses considering friction and real unloading behaviorcitations
- 2013Residual Stress Analysis of the Autofrettaged Thick-Walled Tube Using Nonlinear Kinematic Hardeningcitations
- 2011The effect of shot peening on fatigue life of welded tubular joint in offshore structurecitations
- 2010Residual stress analysis of autofrettaged thick-walled spherical pressure vesselcitations
Places of action
Organizations | Location | People |
---|
article
Applications of ultrasonic testing and machine learning methods to predict the static & fatigue behavior of spot-welded joints
Abstract
Ultrasonic Testing (UT) is one of the well-known Non-Destructive Techniques (NDT) of spot-weld inspection in the advanced industries, especially in automotive industry. However, the relationship between the UT results and strength of the spot-welded joints subjected to various loading conditions isunknown. The main purpose of this research is to present an integrated search system as a new approach for assessment of tensile strength and fatigue behavior of the spot-welded joints. To this end, Resistance Spot Weld (RSW) specimens of three-sheets were made of different types of low carbon steel. Afterward, the ultrasonic tests were carried out and the pulse-echo data of each sample were extracted utilizing Image Processing Technique (IPT). Several experiments (tensile and axial fatigue tests) were performed to study the mechanical properties of RSW joints of multiple sheets. The novel approach of the present research is to provide a new methodology for static strength and fatigue life assessment of three-sheets RSW joints based on the UT results by utilizing Artificial Neural Network (ANN) simulation. Next, Genetic Algorithm (GA) was used to optimize the structure of ANN. This approach helps to decrease the number of tests and the cost of performing destructive tests with appropriate reliability.