People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lalvani, Himanshu
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2022A solid-state joining approach to manufacture of transition joints for high integrity applicationscitations
- 2021Role of the Secondary Phase η During High-Temperature Compression of ATI 718Plus®
- 2020Role of the secondary phase η during high temperature compression of ATI 718PlusRcitations
- 2020Microstructural evolution of SA508 grade 3 steel during hot deformationcitations
- 2020Impact of a multi-step heat treatment on different manufacturing routes of 18CrNiMo7-6 steelcitations
- 2020A study on microstructural evolution in cold rotary forged nickel-superalloyscitations
- 2020Role of the Secondary Phase η During High-Temperature Compression of ATI 718Plus®
- 2019Cold rotary forging of Inconel 718citations
- 2017Impact of various heat treatments on the microstructure evolution and mechanical properties of hot forged 18CrNiMo7-6 steel
Places of action
Organizations | Location | People |
---|
article
Cold rotary forging of Inconel 718
Abstract
The present work includes an in-depth study of microstructure and mechanical property development in a cold rotary forged component manufactured from Inconel 718 alloy. This work is pioneering in that there is no detailed study available in the literature focussing on cold rotary forging of Inconel 718. A tubular preform of 6 mm wall thickness was cold rotary forged into a 90 degree flange part followed by annealing with double aging. The present study provides a thorough analysis of microstructure, hardness and surface roughness evolution from as-received to final cold rotary forged and heat-treated condition including crystallographic texture changes occurring at different stages. The solution-annealed condition of the preform was found to be most suitable for cold rotary forging of Inconel 718. An annealing treatment followed by double-aging imparted desired properties such as homogeneous microstructure, uniform hardness distribution and improved surface roughness into the cold rotary forged Inconel 718 flange. The cold rotary forging can be a cost-effective route for manufacture of axisymmetric components with high material yield and low buy-to-fly ratio for expensive materials such as Inconel 718.