People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kennedy, Andrew R.
Lancaster University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2020Compression moulding and injection over moulding of porous PEEK componentscitations
- 2020Generation of graded porous structures by control of process parameters in the selective laser melting of a fixed ratio salt-metal feedstockcitations
- 2020Measurement and modelling of the elastic defection of novel metal syntactic foam composite sandwich structures in 3-point bendingcitations
- 2019Development of metal matrix composites by direct energy deposition of ‘satellited’ powderscitations
- 2019In vitro cellular testing of strontium/calcium substituted phosphate glass discs and microspheres shows potential for bone regenerationcitations
- 2018Pressure-assisted infiltration of molten metals into non-rigid, porous carbon fibre structurescitations
- 2018Modelling and optimisation of sound absorption in replicated microcellular metalscitations
- 2018Porous calcium phosphate glass microspheres for orthobiologic applicationscitations
- 2018Salt-metal feedstocks for the creation of stochastic cellular structures with controlled relative density by powder bed fabricationcitations
- 2017A water-soluble core material for manufacturing hollow composite sectionscitations
- 2016Effect of solidification rate on pore connectivity of aluminium foams and its consequences on mechanical propertiescitations
- 2015Porous titanium manufactured by a novel powder tapping method using spherical salt bead space holders: characterisation and mechanical propertiescitations
- 2015Porous poly-ether ether ketone (PEEK) manufactured by a novel powder route using near-spherical salt bead porogenscitations
- 2015Porous poly-ether ether ketone (PEEK) manufactured by a novel powder route using near-spherical salt bead porogens : characterisation and mechanical properties
- 2015A study of an improved cutting mechanism of composite materials using novel design of diamond micro-core drillscitations
- 2015Discrete element modelling of flexible fibre packingcitations
Places of action
Organizations | Location | People |
---|
article
Development of metal matrix composites by direct energy deposition of ‘satellited’ powders
Abstract
Limited research has been undertaken investigating the material design freedoms that are granted through the use of additive manufacturing methods, especially in the development of materials specifically formulated for additive processes. In this study, a new material combination was evaluated for use with directed energy deposition methods of additive manufacturing. Here, a Ti-6Al-4 V powder is processed in combination with a much finer titanium diboride powder following a satelliting procedure. The resulting combination consists of large Ti-6Al-4 V particles encased in finer titanium diboride. Deposited composites presented exhibit TiB needles associated with increased hardness. Processing conditions were detailed which permit the deposition of the prepared feedstock onto Ti-6Al-4 V substrates. Microstructural characterisation revealed that the composite was made up of eutectic TiB precipitates dispersed in α-β Ti matrix with few partially melted Ti-6Al-4 V and TiB2 particles. Satelliting TiB2 powder onto Ti-6Al-4 V particle surfaces has significantly improved the homogeneity of composite which is characterised with randomly oriented and uniform distribution of TiB needles in the microstructure. Hardness of composites ranged between 440–480 HV. Hence, the feedstock preparation method proposed has been found to be effective and can be adapted for low cost and rapid formulation of a host of materials for processing by additive manufacture.