People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kwame, James
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2021Effect of machining induced microstructure changes on the edge formability of titanium alloys at room temperature
- 2021Influence of longitudinal scratch defects on the bendability of titanium alloycitations
- 2020Influence of sheet conditions on in-plane strain evolution via ex-situ tensile deformation of Ti-3Al-2.5V at room temperaturecitations
- 2020Examining failure behaviour of commercially pure titanium during tensile deformation and hole expansion testcitations
- 2020Impact of machining induced surface defects on the edge formability of commercially pure titanium sheet at room temperaturecitations
- 2019Superplasticity of Ti-6Al-4V Titanium Alloy: Microstructure Evolution and Constitutive Modellingcitations
- 2019Superplastic deformation behavior of ultra-fine-grained Ti-1V-4Al-3Mo alloycitations
- 2019Experimental, modelling and simulation of an approach for optimizing the superplastic forming of Ti-6%Al-4%V titanium alloycitations
- 2019Effect of edge conditions on the formability of commercially pure titanium sheet (Grade 2) at room temperature
- 2017Superplastic deformation behaviour and microstructure evolution of near-α Ti-Al-Mn alloycitations
- 2017Modelling of the superplastic deformation of the near-a titanium alloy (Ti-2.5AL-1.8MN) using arrhenius-type constitutive model and artificial neural networkcitations
Places of action
Organizations | Location | People |
---|
article
Experimental, modelling and simulation of an approach for optimizing the superplastic forming of Ti-6%Al-4%V titanium alloy
Abstract
The study presents an integrated approach for superplastic forming of Ti-6%Al-4%V titanium alloy. The flow behavior of the studied alloy was investigated using uniaxial constant strain rate tensile tests in a temperature range of 800–900 °C and a strain rate range of 3 × 10−4–3 × 10-3s-1. The obtained flow behavior was modeled using the simple Johnson-Cook (S J-C), modified Johnson-Cook (M J-C) and artificial neural network (ANN) models. An assessment study between the constructed models was performed in order to evaluate the predictability of each model. Standard statistical comparative quantities such as correlation coefficient (R), mean absolute relative error (AARE) and the root mean square error (RMSE) were used to ascertain the model viability. The S J-C model proved ineffectual in predicting the flow behavior of Ti-6%Al-4%V alloy. The M J-C and ANN models are able to successfully describe the flow behavior of the alloy. The validity of the model used for the simulation was ascertained by testing the predicted data with the constructed models at a temperature of 875 °C and a strain rate of 2 × 10-3s-1 using DEFORM 3D finite element simulation (FES). The obtained results from the FES were verified with the experimental results after superplastic forming process. The FES results show the possibility of using uniaxial tensile test data to simulate superplastic forming process of the Ti-6%Al-4%V titanium sheets.