Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Johar, Mohammad Hossein

  • Google
  • 1
  • 3
  • 48

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019The joint properties of a high-chromium Ni-based superalloy made by diffusion brazing Microstructural evolution, corrosion resistance and mechanical behavior48citations

Places of action

Chart of shared publication
Mirsalehi, Seyyed Ehsan
1 / 4 shared
Arhami, Farzam
1 / 3 shared
Sadeghian, Amirhossein
1 / 6 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Mirsalehi, Seyyed Ehsan
  • Arhami, Farzam
  • Sadeghian, Amirhossein
OrganizationsLocationPeople

article

The joint properties of a high-chromium Ni-based superalloy made by diffusion brazing Microstructural evolution, corrosion resistance and mechanical behavior

  • Mirsalehi, Seyyed Ehsan
  • Arhami, Farzam
  • Sadeghian, Amirhossein
  • Johar, Mohammad Hossein
Abstract

<p>The phase transformation during diffusion brazing of high chromium Ni-based Inconel 939 superalloy, using a ternary Ni-14.9 Cr-3.7 B (wt.%) interlayer was studied. The microstructural evolution during the bonding process was governed by isothermal solidification, athermal solidification and solid-state precipitation. A single-phase gamma solid solution was the only phase detected in the isothermally solidified zone (ISZ). However, the cooling-induced solidification led to the formation of proeutectic-gamma, Ni-rich boride, Cr-rich boride and eutectic-gamma at the athermally solidified zone (ASZ) which deteriorated the corrosion resistance of the joints. The ASZ width decreased by increasing the bonding time. A reverse relation between the corrosion resistance and the ASZ width was perceived. The complete isothermal solidification, as well as the highest corrosion resistance, were obtained at the bonding time of 90 min. The solid-state precipitation resulted in the formation of Cr-rich boride particles with two blocky and Widmanstatten morphologies in the diffusion affected zone (DAZ). The hardest structure compared to the other microstructural zones belonged to the ASZ in all the bonds. The shear strength of the joints increased in longer bonding times and a reverse relation between the ASZ width and the shear strength was witnessed. The highest shear strength (∼625 MPa) which was approximately 80% of that of the base metal was achieved in the 90-min sample.</p>

Topics
  • corrosion
  • chromium
  • phase
  • strength
  • precipitation
  • boride
  • superalloy