People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Turner, Richard
University of Birmingham
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2024On the Salt Bath Cleaning Operations for Removal of Lubricants on the Surface of Titanium Alloy Aerospace Fasteners
- 2024Characterization of Ti-6Al-4V Bar for Aerospace Fastener Pin Axial Forging
- 2023On the Pre-Forging Heating Methods for AA2014 Alloycitations
- 2021A study of the deformation derivatives for a Ti-6Al-4V inertia friction weldcitations
- 2021A study of the convective cooling of large industrial billets
- 2021Metallurgical modelling of Ti-6Al-4V for welding applicationscitations
- 2021The influence of soak temperature and forging lubricant on surface properties of steel forgingscitations
- 2020Microstructural modelling of thermally-driven β grain growth, lamellae & martensite in Ti-6Al-4Vcitations
- 20193D Forging simulation of a multi-partitioned titanium alloy billet for a medical implantcitations
- 2019Microstructural modelling of the α+β phase in Ti-6Al-4V:citations
- 2019Modelling of the heat-affected and thermomechanically affected zones in a Ti-6Al-4V inertia friction weldcitations
- 2018Analysis of the failure of a PPS polymer cycling support:citations
- 2018Mean-field modelling of the intermetallic precipitate phases during heat treatment and additive manufacture of Inconel 718citations
- 2018A computational study on the three-dimensional printability of precipitate-strengthened nickel-based superalloyscitations
- 2017Keyhole formation and thermal fluid flow-induced porosity during laser fusion welding in titanium alloyscitations
- 2017Mesoscale modelling of selective laser meltingcitations
- 2017On the processing of steel rod for agricultural conveyor systems
- 2016Porosity formation in laser welded Ti-6Al-4V Alloy: modelling and validation
- 2016Linking a CFD and FE analysis for Welding Simulations in Ti-6Al-4V
- 2016Calculating the energy required to undergo the conditioning phase of a titanium alloy inertia friction weldcitations
- 2016An integrated modelling approach for predicting process maps of residual stress and distortion in a laser weldcitations
- 2015Linear friction welding of Ti6Al4V: experiments and modellingcitations
- 2015Validation of a Model of Linear Friction Welding of Ti6Al4V by Considering Welds of Different Sizescitations
- 2013The effect of hydrogen on porosity formation during electron beam welding of titanium alloys
- 2013Introduction of materials modelling into processing simulationcitations
- 2012The effect of hydrogen on porosity formation during electron beam welding of titanium alloys
- 2011Linear friction welding of Ti-6Al-4V: Modelling and validationcitations
Places of action
Organizations | Location | People |
---|
article
On the processing of steel rod for agricultural conveyor systems
Abstract
A supply of medium carbon boron steel rod has been used industrially to produce the “rib-like” rod structures for mechanical conveyor systems, used across a number of non-safety critical industries, such as agricultural harvesting. The steel rod is resistance-heated and subsequently mechanically deformed such to produce a small region of flattened proportions, to allow for easier mechanical attachment to a belt system to attach all rods to the conveyor system. It has been noted industrially that after the flattening operations have taken place, a region at the shoulder of the flattened section is susceptible to cracking problems. The root cause of this cracking was desired to be understood, hence three likely causations for the cracking were explored, namely (i) mechanical stresses at the region, (ii) micro-segregation of the alloying elements at the location, and (iii) overheating.A 2D axi-symmetric finite element framework was developed to predict the stresses generated in the flattened section. This model showed that there were some areas of concern regarding the predicted effective stress and strain distributions, compared to the material flow stresses, thus potentially a mechanical reason for the cracking to occur. Microscopy methods were considered to understand the microstructure of the surrounding material and the nature of the cracks. However, these suggested that there was no likely element segregation to cause a significant variation in material property. Finally, temperatures generated by the resistance heating procedure were measured, and this does suggest that the material may have been overheated, thus producing coarser austenite grains whilst the material is held at elevated temperatures for a short time, and so producing inferior mechanical properties in this small region of heated material. The effects of overheating are impossible to eliminate without a complete re-melt of the steel. Thus, the research has demonstrated that a combination of overheating, and in-situ stress and strain distributions, could be the root cause of the cracking.