Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Inoue, S.-I.

  • Google
  • 1
  • 9
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Advantages of rapid solidification over casting of Mg-0.4Zn-1Y alloy4citations

Places of action

Chart of shared publication
De, Prado E.
1 / 1 shared
Školáková, Andrea
1 / 9 shared
Kubásek, Jiří
1 / 44 shared
Duchoň, J.
1 / 4 shared
Svora, P.
1 / 3 shared
Kawamura, Y.
1 / 2 shared
Dvorský, Drahomír
1 / 18 shared
Yoshida, A.
1 / 6 shared
Hosová, Klára
1 / 11 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • De, Prado E.
  • Školáková, Andrea
  • Kubásek, Jiří
  • Duchoň, J.
  • Svora, P.
  • Kawamura, Y.
  • Dvorský, Drahomír
  • Yoshida, A.
  • Hosová, Klára
OrganizationsLocationPeople

article

Advantages of rapid solidification over casting of Mg-0.4Zn-1Y alloy

  • De, Prado E.
  • Školáková, Andrea
  • Kubásek, Jiří
  • Duchoň, J.
  • Svora, P.
  • Kawamura, Y.
  • Dvorský, Drahomír
  • Inoue, S.-I.
  • Yoshida, A.
  • Hosová, Klára
Abstract

The Mg-Y-Zn magnesium alloy system is commonly recognized for its remarkable combination of high strength and ductility, achieved even with minimal amounts of alloying elements. This exceptional performance is attributed to its unique microstructure, which includes Long-Period Stacking Ordered (LPSO) phases or the distinctive microstructure derived from the LPSO phase, referred to as the Mille-Feuille structure (MFS). This study systematically compares the traditional ingot metallurgy method with the rapid solidification technique, coupled with diverse heat treatments and extrusion processes. Microscopic analyses reveal variations in the presence of LPSO phases, Mille-Feuille structure, and grain size, leading to divergent mechanical and corrosion properties. The rapid solidification approach stands out, ensuring superior mechanical properties alongside a reasonable corrosion rate. © 2024

Topics
  • impedance spectroscopy
  • grain
  • corrosion
  • grain size
  • phase
  • Magnesium
  • magnesium alloy
  • Magnesium
  • extrusion
  • strength
  • casting
  • ductility
  • rapid solidification