People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Moosmann, Julian
Helmholtz-Zentrum Hereon
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024Unveiling thermo‐fluid dynamic phenomena in laser beam welding
- 2024Exploring spatial beam shaping in laser powder bed fusion:High-fidelity simulation and in-situ monitoringcitations
- 2024Improvement of corrosion resistance of PEO coated dissimilar Ti/Mg0.6Ca couplecitations
- 2024Improvement of corrosion resistance of PEO coated dissimilar Ti/Mg0.6Ca couplecitations
- 2024Towards an Understanding of the Challenges in Laser Beam Welding of Copper - Observation of the Laser-Matter Interaction Zone in Laser Beam Welding of Copper and Steel Using in Situ Synchrotron X-Ray Imagingcitations
- 2024Pull‐Out Testing of Electrochemically Etched NiTi Shape Memory Alloy Wires in Shape Memory Alloy Hybrid Composites
- 2024Pull‐Out Testing of Electrochemically Etched NiTi Shape Memory Alloy Wires in Shape Memory Alloy Hybrid Composites
- 2024Challenges in non-destructive X-ray CT testing of riveted joints in the automotive industrycitations
- 2023Interface failure analysis of embedded NiTi SMA wires using in situ high-resolution X-ray synchrotron tomographycitations
- 2023Analysis on the influence of vapor capillary aspect ratio on pore formation in laser beam welding of aluminumcitations
- 2023Towards an Understanding of the Challenges in Laser Beam Welding of Copper – Observation of the Laser-Matter Interaction Zone in Laser Beam Welding of Copper and Steel Using in Situ Synchrotron X-Ray Imagingcitations
- 2022Assessing the long-term in vivo degradation behavior of magnesium alloys - a high resolution synchrotron radiation micro computed tomography studycitations
- 2022Pore Formation and Melt Pool Analysis of Laser Welded Al-Cu Joints using Synchrotron Radiationcitations
- 2022Pore formation and melt pool analysis of laser welded Al-Cu joints using synchrotron radiationcitations
- 2021Assessing the microstructure and in vitro degradation behavior of Mg-xGd screw implants using µCTcitations
- 2021Assessing the microstructure and in vitro degradation behavior of Mg-xGd screw implants using µCTcitations
- 2021Multimodal ex vivo methods reveal that Gd-rich corrosion byproducts remain at the implant site of biodegradable Mg-Gd screwscitations
- 2019A load frame for in situ tomography at PETRA IIIcitations
- 2019A load frame for in situ tomography at PETRA IIIcitations
- 2018Visualization of Implant Failure by Synchrotron Tomographycitations
Places of action
Organizations | Location | People |
---|
article
Improvement of corrosion resistance of PEO coated dissimilar Ti/Mg0.6Ca couple
Abstract
With the growing demand for weight reduction, the application of joint lightweight structural materials is increasing. Magnesium alloys feature low density, high specific strength and good formability, offering significant advantages for fuel efficiency and load capacity. Combined with Ti, a dissimilar Ti/Mg composite material provides great flexibility combining the properties of each material. However, because of the great differences in chemical and electrochemical properties between Mg and Ti, it is imperative to address the galvanic corrosion problem of such dissimilar Ti/Mg components. This work presents an investigation of the PEO processing of sintered Ti/Mg0.6Ca couples, aiming to improve the corrosion resistance of such dissimilar alloy combinations using a phosphate-aluminate electrolyte. The results show that uniform and continuous coatings can be formed on the dissimilar Ti/Mg0.6Ca couple. The coating mainly contains MgO and MgAl2O4 on the Mg0.6Ca side, and Al2TiO5 is the dominant phase on the Ti side. The work also took advantage of synchrotron X-ray computed tomography (CT) scanning to achieve 3D reconstruction of the coating morphology, which can be a fast method to assess the porosity and compactness of the coating and further predict the coating corrosion resistance. The coating effectively improved the corrosion resistance of the dissimilar Ti/Mg0.6Ca couple.